• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Interactive Effect of the Serotonin Transporter 5-HTTLPR Genotype and Chronic Stress on Depressive Symptoms in Postmenopausal Women

Hantsoo, Liisa Victoria 20 August 2010 (has links)
No description available.
22

Functional Investigations into the Recognition Memory Network, its Association with Genetic Polymorphisms and Implications for Disorders of Emotional Memory / Das Wiedererkennensgedächtnis: Untersuchung eines funktionellen neuronalen Netzwerkes im Zusammenhang mit genetischen Polymorphismen und deren Bedeutung für Störungen des emotionalen Gedächtnisses.

Dörfel, Denise 27 July 2010 (has links) (PDF)
Recent research, that has been focused on recognition memory, has revealed that two processes contribute to recognition of previously encountered items: recollection and familiarity (Aggleton & Brown, 1999; Eichenbaum, 2006; Eichenbaum, Yonelinas, & Ranganath, 2007; Rugg & Yonelinas, 2003; Skinner & Fernandes, 2007; Squire, Stark, & Clark, 2004; Wixted, 2007a; Yonelinas, 2001a; Yonelinas, 2002). The findings of neural correlates of recollection and familiarity lead to the assumption that there are different brain regions activated in either process, but there are, to the best of my knowledge, no studies assessing how these brain regions are working together in a recollection or a familiarity network, respectively. Additionally, there are almost no studies to date, which directly searched for overlapping regions. Therefore, in study I of the current thesis, brain regions associated to both recognition processes are searched investigated. Additionally, a connectivity analysis will search for functional correlated brain activations that either build a recollection or a familiarity network. It is undoubtable that the Brain Derived Neurotrophic Factor (BDNF) is strongly involved in synaptic plasticity in the hippocampus (Bramham & Messaoudi, 2005) and there is evidence that a genetic variant of this neurotrophin (BDNF 66Met) is related to poorer memory performance (Egan, et al., 2003). Therefore, in study II of the current thesis, the effect of BDNF Val66Met on recollection and familiarity performance and related brain activations is investigated. Finally, one could summarize, that serotonin, like BDNF, is strongly involved in brain development and plasticity as well as in learning and memory processes (Vizi, 2008). More precisely, there is evidence for alterations in the structure of brain regions, which are known to be involved in emotional memory formation and retrieval, like amygdala and hippocampus (Frodl, et al., 2008; Munafo, Brown, & Hariri, 2008; Pezawas, et al., 2005). One study found an slight epistatic effect of BDNF and 5-HTTLPR on the grey matter volume of the amygdala (Pezawas, et al., 2008). Therefore, in study III, it is investigated if such an interaction effect could be substantiated for the amygdala and additionally revealed for the hippocampus. The results of the current thesis allow further comprehension of recollection, hence episodic memory, and point to a special role of the BDNF in temporal and prefrontal brain regions. Additionally, the finding of an epistatic effect between BDNF and serotonin transporter function point to the need of analyzing interactions between genes and also between genes and environmental factors which reveals more information than the study of main effects alone. In conclusion, analyzing behavioral and neural correlates of episodic memory reveal allowed insights in brain functions that may serve as guideline for future studies in clinical populations with memory deficits, including susceptibility factors such as good or bad environment, as well as promising gene variants that influence episodic memory.
23

Impact of the Serotonin-Transporter-Polymorphism (5-HTTLPR) and Stressful Life Events on the Stress Response in Humans: Impact of the Serotonin-Transporter-Polymorphism (5-HTTLPR) and Stressful Life Events on the Stress Response in Humans

Müller, Anett 24 September 2009 (has links)
The 5-HTT gene (SLC6A4) is regulated by a common polymorphism in the promoter region (5-HTTLPR), which has functional consequences. Two major alleles have been observed and shown to have differential transcriptional activity with the long (L) allele having greater gene expression than the short (S) allele. 5-HTTLPR appears to modulate depression, anxiety and personality traits such as neuroticism. Additionally, a significant influence of 5-HTTLPR genotype on amygdala reactivity in response to fearful stimuli has been reported. Moreover, 5-HTTLPR seems to impact on the role of stressful life events (SLEs) in the development of depression. An elevated risk of depression and suicidal behaviors has been found in carriers of at least one low expressing S allele who had experienced SLEs, suggesting a gene x environment interaction. However, a recent meta-analysis showed that several findings failed to replicate this finding. Since genetic polymorphisms of the dopaminergic and serotonergic neurotransmission interact at the molecular, analyses with another polymorphism of the dopaminergic system, the dopamine D4 receptor (DRD4) was included to consider these likely gene-gene interactions (epistasis). The aim of this series of studies was to investigate the role 5-HTTLPR and SLEs on the endocrine stress response in different age samples. While newborns have been examined by a heel prick, stress responses were provoked in children (8-12 yrs) and younger adults (19-31 yrs) and older adults (54-68 yrs.) with the Trier Social Stress Test (TSST). The Life History Calendar (LHC) and Life Events Questionnaire (LEQ) were used to acquire data on SLEs. While in newborns the S/S genotype showed a significantly higher acute endocrine stress response than L/L or S/L genotypes, no significant difference between genotype groups was found in children. In the younger adult sample, the genotype impacted on cortisol stress responsiveness was reversed. Adults carrying the more active L allele of the 5-HTTLPR polymorphism showed a significantly larger cortisol response to the TSST than individuals carrying at least one of the lower expressing S allele. In older adults, no significant difference between genotype groups was found. However, results point in the same direction with showing highest cortisol response in individuals with L/L genotype. These data suggest that the association between 5-HTTLPR and endocrine stress reactivity seems to alter across lifespan, more specific the effects of genotype turns around. In addition, a significant interaction effect of 5-HTTLPR and SLEs has been found in the sample of younger adults, i.e. that early SLE as well as a severe number SLEs across the entire lifespan seem to modulate the interaction between HPA axis activity and 5-HTTLPR genotype. Additionally, a DRD4 by 5-HTTLPR interaction emerged which point to independent and joint effects of these polymorphisms on stress responsivity with regard to the concept of genegene interaction.
24

Functional Investigations into the Recognition Memory Network, its Association with Genetic Polymorphisms and Implications for Disorders of Emotional Memory

Dörfel, Denise 22 January 2010 (has links)
Recent research, that has been focused on recognition memory, has revealed that two processes contribute to recognition of previously encountered items: recollection and familiarity (Aggleton & Brown, 1999; Eichenbaum, 2006; Eichenbaum, Yonelinas, & Ranganath, 2007; Rugg & Yonelinas, 2003; Skinner & Fernandes, 2007; Squire, Stark, & Clark, 2004; Wixted, 2007a; Yonelinas, 2001a; Yonelinas, 2002). The findings of neural correlates of recollection and familiarity lead to the assumption that there are different brain regions activated in either process, but there are, to the best of my knowledge, no studies assessing how these brain regions are working together in a recollection or a familiarity network, respectively. Additionally, there are almost no studies to date, which directly searched for overlapping regions. Therefore, in study I of the current thesis, brain regions associated to both recognition processes are searched investigated. Additionally, a connectivity analysis will search for functional correlated brain activations that either build a recollection or a familiarity network. It is undoubtable that the Brain Derived Neurotrophic Factor (BDNF) is strongly involved in synaptic plasticity in the hippocampus (Bramham & Messaoudi, 2005) and there is evidence that a genetic variant of this neurotrophin (BDNF 66Met) is related to poorer memory performance (Egan, et al., 2003). Therefore, in study II of the current thesis, the effect of BDNF Val66Met on recollection and familiarity performance and related brain activations is investigated. Finally, one could summarize, that serotonin, like BDNF, is strongly involved in brain development and plasticity as well as in learning and memory processes (Vizi, 2008). More precisely, there is evidence for alterations in the structure of brain regions, which are known to be involved in emotional memory formation and retrieval, like amygdala and hippocampus (Frodl, et al., 2008; Munafo, Brown, & Hariri, 2008; Pezawas, et al., 2005). One study found an slight epistatic effect of BDNF and 5-HTTLPR on the grey matter volume of the amygdala (Pezawas, et al., 2008). Therefore, in study III, it is investigated if such an interaction effect could be substantiated for the amygdala and additionally revealed for the hippocampus. The results of the current thesis allow further comprehension of recollection, hence episodic memory, and point to a special role of the BDNF in temporal and prefrontal brain regions. Additionally, the finding of an epistatic effect between BDNF and serotonin transporter function point to the need of analyzing interactions between genes and also between genes and environmental factors which reveals more information than the study of main effects alone. In conclusion, analyzing behavioral and neural correlates of episodic memory reveal allowed insights in brain functions that may serve as guideline for future studies in clinical populations with memory deficits, including susceptibility factors such as good or bad environment, as well as promising gene variants that influence episodic memory.
25

The temporal dynamics of volitional emotion regulation / Die zeitliche Dynamik willentlicher Emotionsregulation

Schardt, Dina Maria 26 January 2010 (has links) (PDF)
Happiness, anger, surprise, irritation… if we note down the emotions that we go through on a given day, the list will most probably be quite long. A surge of studies on the bidirectional interaction between emotion and cognition suggests that we need emotional appraisals in order to lead a successful life and maintain our personal, social and economic integrity (Bechara, 2005; Damasio, 1994; Fox, 2008; Gross & Thompson, 2007; Walter, 2005). And yet, we seldom ‘just’ experience emotions, but often try to influence them to best fit our current goals. Based on the assumption that emotional reactions entail changes on various levels, and that these changes happen in- or outside of our awareness, affective science has adopted emotion regulation as one of its major research topics (Beauregard, Levesque, & Paquette, 2004; Gross, 1999; Ochsner, 2007). In fact, neural (e.g. amygdala activation) and behavioral (e.g. feeling of negativity) correlates of emotional reactions are effectively reduced by top-down processes of explicit and implicit control (Drabant, McRae, Manuck, Hariri, & Gross, 2009; Levesque, et al., 2003; Ochsner, Ray, et al., 2004). Furthermore, evidence from studies investigating voluntary thought control suggests that control strategies may have lasting and paradoxical consequences (Abramowitz, Tolin, & Street, 2001; Wegner, 2009). In a very recent investigation, lasting effects of regulation were also shown after the cognitive control of emotions: the activation timecourse of the amygdala was significantly increased immediately following regulation, and this difference was also related to the activation of the amygdala to the same stimuli a few minutes later (Walter, et al., 2009). Aside from these contextual or qualitative influences, emotional processing also differs between individuals: genetic variation within the serotonergic system for instance is known to affect emotional reactivity both on the behavioral and on the neural level (Hariri, et al., 2005; Hariri, et al., 2002; Lesch, et al., 1996). In the present work, the temporal dynamics of volitional emotion regulation were investigated in three studies. It was hypothesized that both the subjective experience of negativity and the amygdala activation can be attenuated by the detachment from negative emotions, which in turn leads to an immediate neural aftereffect after the offset of regulation. Furthermore, volitional emotion regulation was expected to be capable of reducing or even obliterating genetically mediated amygdala hyperreactivity to negative emotional cues. Similar to previous investigations (Walter, et al., 2009), pictures of aversive or neutral emotional content were presented while participants were instructed to react naturally to half of the pictures, and to regulate their emotional response upon the other half of the stimuli. The first two studies of the present work were designed to further characterize the immediate aftereffect of volitional regulation in the amygdala: Study 1 included behavioral ratings of negativity at picture offset and at fixation offset in order to provide behavioral measures of experiential changes, while in Study 2, participants continued to experience or regulate their emotions during a “maintain” phase after picture offset. The primary goal of Study 3 was to evaluate whether volitional emotion regulation can reduce genetically mediated amygdala hyperreactivity to aversive emotional material in individuals with the short variant of the serotonin transporter genotype (Hariri, et al., 2005; Hariri, et al., 2002), and whether the immediate aftereffect is also influenced by the serotonin transporter genotype. In all three studies, the amygdala was significantly activated by aversive versus neutral stimuli, while cognitive emotion regulation attenuated the activation in the amygdala and increased the activation in a frontal-parietal network of regulatory brain regions. This neural effect was complemented by the behavioral ratings which show that the subjective experience of negativity was also reduced by detachment (Study 1). Also in all three studies, an immediate aftereffect was observed in the amygdala following the end of regulation. Moreover, the preoccupation with the previously seen pictures after the scanning session varied across the experimental conditions (Studies 2 and 3). Volitional regulation proved effective in reducing amygdala activation to negative stimuli even in 5-HTTLPR short allele carriers that show an increased reactivity to this type of cue. At the same time, functional coupling of the ventrolateral and medial orbital prefrontal cortex, the subgenual and the rostral anterior cingulate with the amygdala was higher in the s-group. However, in Study 3 the immediate aftereffect was found only in l/l-homozygote individuals following the regulation of fear. Taken together, the results of the three studies clearly show that volitional regulation is effective in reducing behavioral and neural correlates of the experience of negative emotions (Levesque, et al., 2003; Ochsner, Bunge, Gross, & Gabrieli, 2002; Ochsner, Ray, et al., 2004), even in the case of a genetically mediated hyperreactivity to such materials. Thus, it seems reasonable to assume that conscious will can effectively counteract genetic determinants of emotional behavior. Moreover, the present results suggest that the temporal dynamics of volitional emotion regulation are characterized by a paradoxical rebound in amygdala activation after regulation, and that the immediate aftereffect is a marker of the efficiency of the initial and the sustained effects of emotion regulation (Walter, et al., 2009). In summary, the successful replication of the immediate aftereffect of emotion regulation in all three studies of this dissertation opens up exciting new research perspectives: a comparison of the short- and long-term effects of different regulatory strategies, and the investigation of these effects also in positive emotions would complement the present results, since the neural mechanisms involved in these processes show some characteristic differences (Ochsner, 2007; Staudinger, Erk, Abler, & Walter, 2009). A comprehensive characterization of this neural marker and its implications for emotional experience might also be useful with respect to clinical applications. The detailed examination of the various time scales of emotional regulation might for instance inform the diagnostic and therapeutic interventions in affective disorders that are associated with emotional dysfunctions (Brewin, Andrews, & Rose, 2000; Johnstone, van Reekum, Urry, Kalin, & Davidson, 2007). Ultimately, we might thus come to understand the neural underpinnings of what the feelings we have today have to do with the feelings we had yesterday – and with the feelings with might have tomorrow.
26

Characterizing the age-related decline of memory monitoring : neuroimaging and genetic approaches

Pacheco, Jennifer Lynn 09 June 2011 (has links)
Memory monitoring, or the ability to accurately assess one’s memory retrieval success, is known to be declined for older adults. The behavioral decline has been well explored, and is specific to tasks of source monitoring; tasks involving item memory monitoring do not show age-related deficits. This study attempts to further characterize the decline by exploring neuroanatomical contributions to the decline, and genetic influences that may explain performance variability in older adults. Older adults were genotyped for the serotonin transporter (5-HTTLPR) gene, and those that are carriers of the low-expressing allele demonstrate the expected age-related decline of source monitoring performance when compared to younger adults. Interestingly, older adults who lack this allele did not display any decline in performance when compared to younger adults. Neuroanatomical correlates of task performance indicate that prefrontal regions in the inferior and lateral cortices support accurate source memory monitoring, likely through their role in the proper selection of memory cues and inhibition of irrelevant information. This relationship suggests that age-related atrophy occurring in these structures could be responsible for the performance deficits on source memory monitoring tasks. There was no direct relationship seen between genotype for the 5-HTTLPR gene and cortical volumes, however diffusion tensor imaging shows that older adults who carry this allele have altered connections between the medial temporal lobe, responsible for memory retrieval, and prefrontal cortex, which monitors the retrieval process. Through stronger connections of critical networks, older adults who lack the 5-HTTLPR short allele may be able to compensate for the age-related atrophy seen in the prefrontal cortex. Functional results further indicate that the older adult non-carriers recruit inferior and lateral frontal regions to a greater extent than the older adult carriers during accurate memory monitoring. These results begin to suggest a neuroprotective mechanism for the 5-HTTLPR genotype, wherein some older adults may be able to postpone the expected decline of memory monitoring by retaining the ability to recruit essential inferior frontal structures through more organized white matter pathways. / text
27

Genetische Polymorphismen im Serotonintransportergen und Risikofaktoren für das SIDS (Sudden Infant Death Syndrome) / Genetic Polymorphisms in the Serotonin Transporter Gene and Risk Factors for SIDS (Sudden Infant Death Syndrome)

Geisenberger, Dorothee 28 November 2011 (has links)
No description available.
28

Mechanisms of platelet inhibition by the selective serotonin reuptake inhibitor citalopram

Roweth, Harvey George January 2018 (has links)
Background: Selective serotonin reuptake inhibitor (SSRI) antidepressants prevent serotonin (5-HT) uptake by the serotonin transporter (SERT). Since blood platelets express SERT, SSRIs may modify platelet function and the risk of cardiovascular disease. However, the beneficial or adverse effects of SSRIs on arterial thrombosis are poorly characterised and detailed in vitro experimental data is limited. The SSRI citalopram is a racemate, the (S)-isomer being the more potent SERT inhibitor. Although citalopram has been shown to inhibit platelets in vitro, it is unclear whether this is mediated via SERT blockade. Aim: To determine if citalopram inhibits platelet function via SERT blockade, or through a novel mechanism of action. Findings: 5-HT uptake into platelets was blocked by both citalopram isomers at concentrations that had no apparent effect on platelet function. Despite the (S)-citalopram isomer being the more potent SERT inhibitor, (R)-citalopram was equally potent at inhibiting other platelet functions. These findings strongly suggest that inhibition of platelet function by citalopram in vitro is not mediated by blocking SERT. Subsequent experiments identified two putative mechanisms for citalopram-mediated platelet inhibition: 1) citalopram did not inhibit calcium store release induced by the platelet agonist U46619, despite blocking subsequent Rap1 activation. A credible target for this inhibitory mechanism is the calcium and diacylglycerol guanine nucleotide exchange factor-1 (CalDAG-GEFI): 2) citalopram suppressed early protein phosphorylation within the GPVI pathway, resulting in the inhibition of subsequent platelet responses. Further experiments show that other commonly used antidepressants also inhibit platelets. As with citalopram, inhibition was only observed at concentrations above those required to block SERT, suggesting that alternative inhibitory mechanism(s) are responsible. Conclusions: Data presented in this thesis support two novel putative mechanisms of citalopram-induced platelet inhibition. These findings demonstrate that citalopram and other antidepressants inhibit platelets independently of their ability to block SERT-dependent 5-HT transport. The identification of thesemechanisms provides a pharmacological approach to develop novel antiplatelet agents based on current antidepressants.
29

Neuroendocrine stress responsiveness in human obesity and non-obesity controls

Schinke, Christian 01 October 2019 (has links)
BACKGROUND: Obesity is a leading health burden of the 21st century. Alterations of the individual endocrine stress response and the monoamine system may pathophysiologically contribute to the obesity pandemic and its metabolic and mental complications. OBJECTIVES: (i) to measure hypothalamic-pituitary-adrenal (HPA) axis responsiveness and its relation to serum concentrations of the arginine-vasopressin (AVP) surrogate copeptin in subjects with obesity (OB) compared to non-obesity controls (NOC), (ii) to test whether HPA axis responsiveness and copeptin are related to central noradrenaline (NA) transporter (NAT) availability, (iii) to assess brain serotonin transporter (SERT) binding potentials in OB compared to NOC. METHODS: 40 subjects with obesity (BMI > 35kg/m2) were compared to 25 non-obesity controls, matched for age and sex. (i) All individuals underwent the combined dexamethasone/corticotropin releasing hormone (dex/CRH) test. Plasma ACTH and cortisol curve parameters were derived, and copeptin was assessed in the 1500h sample. (ii) Positron emission tomography (PET) was applied in 10 OB and 10 NOC using the NAT-selective radiotracer S,S-[11C]O-methylreboxetine (MRB) and associated to curve indicators derived from the dex/CRH test as well as to copeptin. (iii) PET using the SERT selective radiotracer [11C] DASB was performed in 30 OB and 15 NOC for intergroup comparison. RESULTS: (i) OB subjects showed an increased HPA axis responsiveness as measured by cortisol concentrations after CRH stimulation. Correspondingly, the AVP surrogate copeptin was higher in OB along with being significantly associated to HPA axis reactivity. OB subjects had a higher adrenal sensitivity as measured by a lower ACTH/cortisol ratio. (ii) In NOC, the HPA response was related to NAT availability of the amygdala and the orbitofrontal cortex while in OB, this association was located in the hypothalamus. (iii) There were no differences in SERT availability between OB and NOC, but a higher inter-regional SERT connectivity was observed in OB. CONCLUSION: This work supports the notion of an increased endocrine stress response in human obesity, pointing to interacting alterations of the HPA and neurohypophyseal axes. Normally, these stress axes seem to be linked to prefrontal-limbic NA signaling, whereas a loss of this association in favor of a hypothalamic-centered relation is observed in OB. The SERT network pattern is more closely inter-related in OB, albeit central SERT concentrations per se do not differ between OB and NOC.:ABBREVIATIONS 4 LIST OF FIGURES 5 I. BIBLIOGRAPHIC DESCRIPTION 6 II. INTRODUCTION 7 2.1 Obesity as a global health burden 7 2.2 Neurobiology of stress 8 2.3 Stress and obesity 8 2.4 Neuroendocrine correlates of the stress response – The hypothalamic pituitary-adrenaland neurohypophyseal axes 9 2.4.1 Anatomy of the hypothalamic-pituitary-adrenal and neurohypophyseal axes 10 2.4.2 The role of CRH, ACTH and cortisol in the context of metabolism and obesity 11 2.4.3 The role of AVP in the context of metabolism and obesity 12 2.4.4 Measuring HPA axis responsiveness by means of the combined dexamethasonecorticotropin-releasing hormone (dex/CRH) test 12 2.4.5 Measuring AVP secretion by its equally-released surrogate copeptin 14 2.5 The noradrenergic system in the context of obesity and stress axis modulation 14 2.5.1 NA and its influence on feeding behavior16 2.5.2 The association of the noradrenergic system with the HPA and neurohypophyseal axes 16 2.5.3 Monoamine transporters as regulators of neurotransmitter signaling 17 2.5.4 Noradrenaline transporter imaging 18 2.6 The serotonergic system in obesity 19 2.6.1 Role of serotonin in the context of feeding behavior and metabolism 20 2.6.3 5-HTT imaging 21 2.7 Objectives and hypotheses 22 2.8 Study design 23 III. RESULTS 24 3. 1 Post-dexamethasone serum copeptin corresponds to HPA axis responsiveness in human obesity 24 3. 2 Central noradrenaline transporter availability is linked with HPA axis responsiveness and copeptin in human obesity and non-obese controls 34 3. 3 Central serotonin transporter availability in highly obese individuals compared with nonobese controls: A [11C] DASB positron emission tomography study 46 IV. SUMMARY 56 4.1 Subjects with obesity show an enhanced HPA axis responsiveness which correlates to serum concentrations of the AVP surrogate copeptin and abdominal fat distribution 56 4.2 HPA axis responsiveness and copeptin concentrations are differentially related to central NAT availability in subjects with obesity compared to non-obesity controls 58 4.3 Central serotonin transporter availability does not significantly differ in subjects with obesity compared to their non-obesity counterparts 59 4.4 Future direction 61 V. References 62 VI. APPENDICES 79 6.1 Curriculum vitae 79 6.2 Publications 81 6.3 Scientific contribution of the doctoral candidate to the publications 82 6.4 Declaration of the independent writing of this thesis 83 6.5 Acknowledgements 84
30

Investigation into changes of the serotonin transporter (5-HTT) gene promoter in association with in vivo prefrontal 5-HTT availability and reward function in human obesity

Drabe, Mandy 24 September 2018 (has links)
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.:Introduction ............................................................................................................. 3 Homeostatic and hedonic control of food intake...................................................... 3 The obesity epidemic .............................................................................................. 4 The role of 5-HT in energy balance......................................................................... 5 The role of 5-HT in the PFC function....................................................................... 6 The role of the PFC in food intake .......................................................................... 7 The association between central 5-HT transporter (5-HTT) availability and obesity ..................................................................................................................................7 Genetics of obesity ................................................................................................. 8 Epigenetics of obesity ............................................................................................. 9 Objectives and hypothesis of the present work...................................................... 11 Manuscript ..... ....................................................................................................... 12 Summary ............................................................................................................... 20 References ............................................................................................................ 22 Appendices ............................................................................................................I Glossary ................................................................................................................ I Publications ........................................................................................................... IV Selbstständigkeitserklärung................................................................................... V Danksagung .......................................................................................................... VI

Page generated in 0.3072 seconds