• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 65
  • 26
  • 10
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 248
  • 50
  • 36
  • 24
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Demand side management on an intricate multi-shaft pumping system from a single point of control / Shane Thein

Thein, Shane January 2007 (has links)
Eskom, the sole supplier of electricity in South Africa is facing an energy crisis. This is due to the steady increase in demand for electricity in South Africa. Low electricity prices in South Africa have helped the energy intensive industries of South Africa to be more competitive. Unfortunately this has resulted in poor energy efficiency practices and has hampered incentives to save energy. To address this problem, Eskom initiated a Demand Side Management (DSM) programme. DSM is beneficial to both Eskom and the client. However, due to the high cost of implementing such projects, it is feasible to implement it only on sites where the load shift potential is high enough for Eskom to benefit. The mining industry has been targeted for DSM programmes. This is due to the existence of a large mining sector in South Africa and to its energy intensive nature. Most mining operations require large amounts of water which is used to cool the underground environment and so ensure productivity and the safety of the workers. Due to the large amounts of water needed for mining, the electricity usage of these pumping systems is very high. If the use of this electricity can be optimised by implementing DSM principles, this will result in the long term savings of costs for the mines involved. The majority of pumping systems found on mines are single shaft systems. Individually these systems have a very high DSM potential. However, if multiple shaft systems can be used for DSM, the benefits will be far greater. Furthermore, combining several sites with an interconnected water pumping system will increase the potential for DSM and enable sites where individually the potential is too low to be feasible for a DSM project to raise their potential. This will result in more sites where DSM projects can be implemented and more clients who can benefit from the DSM programme. The purpose of this study is to investigate and implement a DSM project on an intricate multi-shaft mine pumping system which will be controlled from a single point. The project required a detailed investigation of the pumping systems on each shaft and how the water system is interlinked between the shafts. This project was carried out on Beatrix Mine Shafts 1, 2 and 3. The pumping systems were analysed and simulated according to the specific constraints and requirements that were specified by the mine. During the investigation and implementation of this project, possible efficiency improvements on certain pump stations were discovered and implemented. The improvements enabled both an increase in water flow to the surface and a decrease in power consumption. Due to this load reduction, the savings achieved were higher than those found in most load shifting projects. Moreover, additional infrastructures were installed to ensure communication between pumping systems. Once the simulation and optimisation of the control system was completed, the pumping system network was automated. The load shift resulted in a ± 3.5 MW shift in the morning peak demand period and a ± 6.0 MW shift in the evening peak demand period. This load shift has resulted in an average cost saving of R 80 000 per month during summer tariff period, and R 300 000 per month during winter tariff period. This saving result was calculated by taking load reduction into account. This project has shown that a DSM project can be implemented successfully, given the necessary historical data and expertise, on a pumping system that is interconnected between multiple shafts. / Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2007.
12

Demand side management on an intricate multi-shaft pumping system from a single point of control / Shane Thein

Thein, Shane January 2007 (has links)
Eskom, the sole supplier of electricity in South Africa is facing an energy crisis. This is due to the steady increase in demand for electricity in South Africa. Low electricity prices in South Africa have helped the energy intensive industries of South Africa to be more competitive. Unfortunately this has resulted in poor energy efficiency practices and has hampered incentives to save energy. To address this problem, Eskom initiated a Demand Side Management (DSM) programme. DSM is beneficial to both Eskom and the client. However, due to the high cost of implementing such projects, it is feasible to implement it only on sites where the load shift potential is high enough for Eskom to benefit. The mining industry has been targeted for DSM programmes. This is due to the existence of a large mining sector in South Africa and to its energy intensive nature. Most mining operations require large amounts of water which is used to cool the underground environment and so ensure productivity and the safety of the workers. Due to the large amounts of water needed for mining, the electricity usage of these pumping systems is very high. If the use of this electricity can be optimised by implementing DSM principles, this will result in the long term savings of costs for the mines involved. The majority of pumping systems found on mines are single shaft systems. Individually these systems have a very high DSM potential. However, if multiple shaft systems can be used for DSM, the benefits will be far greater. Furthermore, combining several sites with an interconnected water pumping system will increase the potential for DSM and enable sites where individually the potential is too low to be feasible for a DSM project to raise their potential. This will result in more sites where DSM projects can be implemented and more clients who can benefit from the DSM programme. The purpose of this study is to investigate and implement a DSM project on an intricate multi-shaft mine pumping system which will be controlled from a single point. The project required a detailed investigation of the pumping systems on each shaft and how the water system is interlinked between the shafts. This project was carried out on Beatrix Mine Shafts 1, 2 and 3. The pumping systems were analysed and simulated according to the specific constraints and requirements that were specified by the mine. During the investigation and implementation of this project, possible efficiency improvements on certain pump stations were discovered and implemented. The improvements enabled both an increase in water flow to the surface and a decrease in power consumption. Due to this load reduction, the savings achieved were higher than those found in most load shifting projects. Moreover, additional infrastructures were installed to ensure communication between pumping systems. Once the simulation and optimisation of the control system was completed, the pumping system network was automated. The load shift resulted in a ± 3.5 MW shift in the morning peak demand period and a ± 6.0 MW shift in the evening peak demand period. This load shift has resulted in an average cost saving of R 80 000 per month during summer tariff period, and R 300 000 per month during winter tariff period. This saving result was calculated by taking load reduction into account. This project has shown that a DSM project can be implemented successfully, given the necessary historical data and expertise, on a pumping system that is interconnected between multiple shafts. / Thesis (M.Ing. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2007.
13

Dimensionamento do eixo do impelidor em sistemas de agitação e mistura para processos industriais / How to size impeller shaft on industrial processes

Barbosa, Eduardo Jose 17 November 2004 (has links)
Orientador: Elias Basile Tambourgi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-04T13:54:52Z (GMT). No. of bitstreams: 1 Barbosa_EduardoJose_M.pdf: 1801283 bytes, checksum: e7ae140b96b1e6af3f8cf78035307f33 (MD5) Previous issue date: 2004 / Resumo: O objetivo deste trabalho é desenvolver uma metodologia de cálculo, de uso simples, porém de caráter robusto, a ser utilizado na seleção de sistemas de agitação e mistura, que englobam: Cálculo/dimensionamento do eixo do agitador para torção e flexão tipo "eixo vazado" para conjunto único e de múltiplos impelidores; Verificação da Rotação Crítica para sistemas de agitação que possuem eixos em balanço; Estimar a potência consumi da em sistemas agitados que utilizam impelidor( es) para produtos com viscosidades variadas. O programa computacional é estruturado a partir do levantamento de equações pertinentes aos sistemas estudados bem como é fruto de experiências já consolidadas em aplicações práticas (industriais) onde o mesmo pode ser utilizado no desenvolvimento e fabricação de tanques, vasos, reatores e sistemas de agitação. O programa desenvolvido, em ambiente Excel pode ser utilizado em substituição aos softwares comerciais, de elevado custo de aquisição e atualização. As proporções recomendadas para uma melhor eficiência do sistema de agitação e mistura, como por exemplo, a altura de líquido x diâmetro do vaso, serão abordadas aqui, bem como a verificação da mudança do comportamento da agitação influenciados pela variação da geometria do tanque e do impelidor e da viscosidade (características do fluído) no processamento no qual eles estão inseridos / Abstract: The objective of this work is to present a calculation methodology, of simple use, however a efficient form to design and to be used on mixing systems selection that comprise: Agitator hollow shaft design/calculation for bending and torsion for single and multiple impellers conditions; Check and compute Critical Speeds in Agitated Vessels that have overhung shafts. Estimating power consumption by impellers on mixing of products with several viscosities; The computational tool was based on several research, as well is a result of the experiences yet consolidated on industrial real applications where it is used to design agitated vessels, tanks, reactors and agitation systems. Computer method run in Excel and can be used on substitution of commercial programs that have high acquisition and up-date prices. Recommended dimensions, for example, how the level of liquid x vessel diameter modify the agitation efficiency, will be treated here, then also, will see the modification on mixing performance by influence varying geometry (impeller and tank) and the viscosity (fluid characteristics) on processes were are involved. / Mestrado / Sistemas de Processos Quimicos e Informatica / Mestre em Engenharia Química
14

The Influence of a Skewed Disk on a Flexible Rotating Shaft

Wang, Xiaoqiang 20 January 1998 (has links)
This thesis describes the experimental test results and computer simulation investigations which were conducted to verify the existing theory of skewed disk forced response predictions. The experimental tests were conducted on a horizontal flexible shaft rotor system supported in two hydrodynamic journal bearings. The computer simulations were conducted with a program that uses a matrix transfer method to get the desired solution. The agreement between experiment and simulation is very good for most skewed disk response characteristics. The influence of measurement errors and operation condition uncertainties are discussed.In the first part of this study, the dynamic behavior of experimental investigations focused on two different skewed disk designs which were mounted at midspan, 1/3 span and 2/3 span of the shaft. The two skewed disks were designed to allow a fine angle adjustment of the desired skew angle. The two designs are (a) the angle tiltable disk and (b) the couple unbalanced mass disk. The experimental results are shown to be close to the theoretical predictions of other authors.In the second part of this study, an existing computer program was used to simulate the experimental test rotor. The results give excellent qualitative agreement although there are some differences in quantitative analysis comparisons. The forced response characteristics of the computer simulation match the experimental results. It has been shown that by using the approximate linear skewed disk model, it is possible to get similar results to the experimental tests for similar disk skew conditions. / Master of Science
15

Static and Vibration Analysis of Thick Generally Laminated Composite Deep Curved Beams

Hajianmaleki, Mehdi 09 December 2011 (has links)
A rigorous first order shear deformation theory (FSDT) is employed along with modified ABD parameters to analyze static and free vibration behavior of generally laminated beams and shafts. Different approaches for calculating composite beam stiffness parameters have been considered and the most accurate one that accounts for material couplings have been used to analyze static and free vibration behaviors of straight beams with different laminates and boundary conditions. In order to analyze curved beams, the term (1+z/R) is exactly integrated into ABD parameters formulation and an equivalent modulus of elasticity is used instead of traditional stiffness terms to account for both the deepness and material coupling of the beam structures. The model has been solved analytically for simply supported boundary conditions and the general differential quadrature (GDQ) technique has been used for other boundary conditions. The results for deflection, moment resultants, and natural frequencies of straight and curved beams with different deepness ratio (often called depth ratio), slenderness ratio, lamination, and boundary conditions are compared with those obtained from accurate three dimensional finite element simulations using ANSYS. The results were in close proximity to three dimensional finite element results. The model is then applied to transverse vibration analysis of multi-span generally laminated composite shafts with a lumped mass using GDQ. The results for natural frequencies are compared to experimental and other analytical models as well as finite element simulation. The results in the present analyses were found accurate. Conclusively, it has been shown that when considering more accurate stiffness parameters, a First Order Shear Deformation Theory can accurately predict static and free vibration behaviors of composite beams and multispan shafts of any deepness, lamination and boundary conditions.
16

Modelagem e controle de microturbina a gás do tipo split-shaft. / Modeling and control of slip-shaft gas microturbine.

Faria, Vítor Pereira 19 February 2010 (has links)
O objetivo deste trabalho é o desenvolvimento do modelo de uma microturbina a gás do tipo split-shaft com sistema de controle por retro-alimentação. Uma revisão bibliográfica dos trabalhos sobre controle de turbinas a gás indicou que praticamente inexistem trabalhos focando este tipo de turbina. O modelo foi desenvolvido a partir da geometria básica da turbina, aplicando-se os fundamentamentos de termodinâmica, mecânica newtoniana e mecânica dos fluidos mencionando os usos da primeira lei da termodinâmica, teoria de momento angular e atrito viscoso entre outros. O trabalho descreve os componentes, materiais e controles que podem ser usados em uma turbina split-shaft. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através dos resultados da simulação do modelo sem controle puderam ser vistos fenômenos que podem ocorrer em um sistema desse tipo como picos de temperatura, influência de uma turbina sobre a outra e a variação de injeção de combustível devido à variação de pressão na câmara de combustão entre outros. Para o modelo controlado, foram testados os controles PI, PID, PI-D, I-PD e PI-PD com feedback negativo. A escolha dos parâmetros de cada controle foi determinada pelo método ITAE dentro de um intervalo para cada parâmetro. O controle escolhido foi o PI-D por seu melhor desempenho e maior simplicidade. O controle fez com que as temperaturas de pico abaixassem em relação ao sistema sem controle e a rotação do gerador de energia elétrica foi mantida com uma variação máxima menor que 1% em relação à rotação de referência. Uma modelagem foi feita para um sistema lubrificante seguindo os mesmos princípios da modelagem da turbina split-shaft. Usou-se fundamentos de mecânica newtoniana e mecânica dos fluidos, com o equacionamento da conservação da quantidade de movimento, perdas de pressão localizada e distribuída entre outros. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através do modelo sem controle viu-se os efeitos do aumento da perda de carga em um dos ramos do sistema e os efeitos de uma entrada de referência em degrau. Esses efeitos são as variações das perdas no sistema e a variação do fluxo nos ramos do sistema. Para o modelo controlado foram testados os controles PI e PI-D com feedback negativo. Utilizou-se o método ITAE dentro de um intervalo para escolha dos parâmetros. O controle escolhido foi o PI porque a diferença de desempenho não foi significativa e a parte derivativa poderia tornar o erro maior devido à forma como o sistema foi modelado. A variável de processo foi controlada e os efeitos da variação de perda de carga em um dos ramos do sistema pôde ser observada. Os modelos são constituídos de várias partes simples, cada qual pode ser substituída por um modelo mais preciso. Assim, a modelagem funciona como um guia, mostrando as partes principais do sistema e podendo fornecer dados para a elaboração de novos modelos. / The objective of the present work is the development of the model of a split-shaft micro gas turbine with feed back control system. A bibliographical review of the works on control of gas turbines indicated that there are very few works dealing this type of gas turbines. The model was developed starting from the basic geometry of the turbine and applying the fundamentals of thermodynamics, newtonian mechanics and fluid mechanics. The components, materials and controls which can be used in a split-shaft turbine are described. The model is simulated firstly without control and later with control. The results showed that, for the uncontrolled model, typical phenomena which may happen in this type of system are seen such as temperature peaks, influence of one turbine on the other and fuel injection variation due to combustion chamber pressure variation amongst others. For the controlled model, the controls PI, PID, PI-D, I-PD and PI-PD with negative feedback are tested. The parameters choice of each control is determined by the ITAE method within an interval for each parameter. The PI-D control was chosen for its best performance and simplicity. The control made the peak temperatures lower than the uncontrolled system and the electricity generator rotation error was kept under 1% with respect to the reference value. A modeling is done for a lubrification system following the same principles of the split-shaft turbine modeling. Conservation laws of mechanics and fluid mechanics are used, such as momentum conservation and energy conservation equations (pressure loss). The model is simulated firstly without control and later with control. For the uncontrolled model, the effects on increasing the head loss in one branch of the system and the effects for a step reference was showed. These effects are the variations of system losses and the flow variation in the system branches. For the controlled model, the PI and PI-D controls with negative feedback were tested. The parameters choice of each control is determined by the ITAE method within an interval for each parameter. The PI control was chosen because the performance difference was not significant and the derivative part could turn the error bigger due to the way the system was modelled. The process variable was controlled and the effects on the variation head loss in one of the system branches was observed. The models have many simple parts; each one can be replaced by a more complex one if necessary. Thus, the present modeling may be used as guide for future improvements.
17

A Methodology For Lining Design Of Circular Mine Shafts In Different Rock Masses

Guler, Erdogan 01 March 2013 (has links) (PDF)
The objective of this thesis is to predict lining thickness inside circular mine shafts. A numerical study with different rock mass strengths and different in-situ non-hydrostatic stresses are carried out in 2D shaft section models to predict pressures that develop on lining support. An iterative process of applying support pressure until observing no failure zone around shaft is used to simulate lining support pressure for each individual model. Later, regression and fuzzy logic analyses are carried out to find a pressure equation for all of the models. Finally, the pressure equation derived is used in elastic &ldquo / thick-walled cylinder&rdquo / equation to calculate the lining thickness required to prevent the development of a failure zone around shafts. At the end of this research, a computer program &ldquo / Shaft 2D&rdquo / is developed to simplify the lining thickness calculation process.
18

Design of a cycloid reducer : Planetary stage design, shaft design, bearing design, bearing selection, and design of shaft related parts

Li, Yawei, Wu, Yuanzhe January 2012 (has links)
The RV reducer (one tpye of cycloid reducer) which has two stage transmissions is widely used in manyfields of engineering. This project is going to design the first stage of the RV reducer, as well as therelated components. The details contain design of input shaft, planetary gears, output shaft, generalbearings and eccentric bearings. The fatigue analysis is mostly used in the calculation process becausethe fatigue failure happens frequently in such rotation machine. In the same time, the general bearingsdesign is based on SKF General Catalogue and the eccentric bearings design is supported by theChinese standard.
19

Modelagem e controle de microturbina a gás do tipo split-shaft. / Modeling and control of slip-shaft gas microturbine.

Vítor Pereira Faria 19 February 2010 (has links)
O objetivo deste trabalho é o desenvolvimento do modelo de uma microturbina a gás do tipo split-shaft com sistema de controle por retro-alimentação. Uma revisão bibliográfica dos trabalhos sobre controle de turbinas a gás indicou que praticamente inexistem trabalhos focando este tipo de turbina. O modelo foi desenvolvido a partir da geometria básica da turbina, aplicando-se os fundamentamentos de termodinâmica, mecânica newtoniana e mecânica dos fluidos mencionando os usos da primeira lei da termodinâmica, teoria de momento angular e atrito viscoso entre outros. O trabalho descreve os componentes, materiais e controles que podem ser usados em uma turbina split-shaft. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através dos resultados da simulação do modelo sem controle puderam ser vistos fenômenos que podem ocorrer em um sistema desse tipo como picos de temperatura, influência de uma turbina sobre a outra e a variação de injeção de combustível devido à variação de pressão na câmara de combustão entre outros. Para o modelo controlado, foram testados os controles PI, PID, PI-D, I-PD e PI-PD com feedback negativo. A escolha dos parâmetros de cada controle foi determinada pelo método ITAE dentro de um intervalo para cada parâmetro. O controle escolhido foi o PI-D por seu melhor desempenho e maior simplicidade. O controle fez com que as temperaturas de pico abaixassem em relação ao sistema sem controle e a rotação do gerador de energia elétrica foi mantida com uma variação máxima menor que 1% em relação à rotação de referência. Uma modelagem foi feita para um sistema lubrificante seguindo os mesmos princípios da modelagem da turbina split-shaft. Usou-se fundamentos de mecânica newtoniana e mecânica dos fluidos, com o equacionamento da conservação da quantidade de movimento, perdas de pressão localizada e distribuída entre outros. O modelo foi simulado primeiramente sem controle e posteriormente com controle. Através do modelo sem controle viu-se os efeitos do aumento da perda de carga em um dos ramos do sistema e os efeitos de uma entrada de referência em degrau. Esses efeitos são as variações das perdas no sistema e a variação do fluxo nos ramos do sistema. Para o modelo controlado foram testados os controles PI e PI-D com feedback negativo. Utilizou-se o método ITAE dentro de um intervalo para escolha dos parâmetros. O controle escolhido foi o PI porque a diferença de desempenho não foi significativa e a parte derivativa poderia tornar o erro maior devido à forma como o sistema foi modelado. A variável de processo foi controlada e os efeitos da variação de perda de carga em um dos ramos do sistema pôde ser observada. Os modelos são constituídos de várias partes simples, cada qual pode ser substituída por um modelo mais preciso. Assim, a modelagem funciona como um guia, mostrando as partes principais do sistema e podendo fornecer dados para a elaboração de novos modelos. / The objective of the present work is the development of the model of a split-shaft micro gas turbine with feed back control system. A bibliographical review of the works on control of gas turbines indicated that there are very few works dealing this type of gas turbines. The model was developed starting from the basic geometry of the turbine and applying the fundamentals of thermodynamics, newtonian mechanics and fluid mechanics. The components, materials and controls which can be used in a split-shaft turbine are described. The model is simulated firstly without control and later with control. The results showed that, for the uncontrolled model, typical phenomena which may happen in this type of system are seen such as temperature peaks, influence of one turbine on the other and fuel injection variation due to combustion chamber pressure variation amongst others. For the controlled model, the controls PI, PID, PI-D, I-PD and PI-PD with negative feedback are tested. The parameters choice of each control is determined by the ITAE method within an interval for each parameter. The PI-D control was chosen for its best performance and simplicity. The control made the peak temperatures lower than the uncontrolled system and the electricity generator rotation error was kept under 1% with respect to the reference value. A modeling is done for a lubrification system following the same principles of the split-shaft turbine modeling. Conservation laws of mechanics and fluid mechanics are used, such as momentum conservation and energy conservation equations (pressure loss). The model is simulated firstly without control and later with control. For the uncontrolled model, the effects on increasing the head loss in one branch of the system and the effects for a step reference was showed. These effects are the variations of system losses and the flow variation in the system branches. For the controlled model, the PI and PI-D controls with negative feedback were tested. The parameters choice of each control is determined by the ITAE method within an interval for each parameter. The PI control was chosen because the performance difference was not significant and the derivative part could turn the error bigger due to the way the system was modelled. The process variable was controlled and the effects on the variation head loss in one of the system branches was observed. The models have many simple parts; each one can be replaced by a more complex one if necessary. Thus, the present modeling may be used as guide for future improvements.
20

Experimental and Numerical Analysis of Flow and Pressure Fields Inside a Variable Depth Single Pocket Hydrostatic Bearing

Horvat, Frank Eugene 12 September 2008 (has links)
No description available.

Page generated in 0.0369 seconds