• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 10
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 20
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Simulating Flood Propagation in Urban Areas using a Two-Dimensional Numerical Model

Gonzalez-Ramirez, Noemi 12 May 2010 (has links)
A two-dimensional numerical model (RiverFLO-2D) has been enhanced to simulate flooding of urban areas by developing an innovative wet and dry surface algorithm, accounting for variable rainfall, and recoding the model computer program for parallel computing. The model formulation is based on the shallow water equations solved with an explicit time-stepping element-by-element finite element method. The dry-wet surface algorithm is based on a local approximation of the continuity and momentum equations for elements that are completely dry. This algorithm achieves global volume conservation in the finite element, even for flows over complex topographic surfaces. A new module was implemented to account for variable rainfall in space and time using NEXRAD precipitation estimates. The resulting computer code was parallelized using OpenMP Application Program Interface, which allows the model to run up to 5 times faster on multiple core computers. The model was verified with analytical solutions and validated with laboratory and field data. Model application to the Malpasset dam break and Sumacarcel flooding event show that the model accurately predicts flood wave travel times and water depths for these numerically demanding real cases. To illustrate the predictive capability of the enhanced model, an application was made of the city of Sweetwater flooding in Miami-Dade County, FL caused by the Hurricane Irene. The simulation starts with dry bed and rainfall is provided by NEXRAD estimates. Integrating NEXRAD rainfall estimates, developing a novel dry-wet area algorithm and parallelizing RiverFLO-2D code, this dissertation presents a proof of concept to accurately and efficiently predict floods in urban areas, identifying future improvements along this line of research.
42

Inversion of Nonlinear Dispersive Wave and its Application in Determining Tsunami Wave Soure

Li, Lieh-Yu 13 April 2011 (has links)
In this study, the method of deciding the water level of the initial tsunami is proposed by using spatial-temporal focusing (Coalescence) theory and waveform inversion reciprocal with Green function. Tsunami and earthquake are so closely bonded that the current tsunami numerical model is dependent on the parameters of the fault and the initial tsunami water level by calculating the theory of half flexibility. But in fact, it is not easy to have the parameters of seabed fault so that the initial tsunami water level is very hard to get a accurate value. On the other hand, although the parameters of fault can be speculated by seismic waves, because ground is uneven medium, therefore, it is still a lot of improvement to get the parameters of fault by using seismic waves. For the tsunami simulation, if you have the value of the initial tsunami water level, the fault parameters can be estimated.Since the propagation of tsunami in the ocean is a linear behavior, the propagating process is affected by the topography of the ocean and the nonlinear effect so minimal that it is to satisfy the linear shallow water equations and the requirement of reversibility;However, in fact, the values of the water level measured by the tide stations on the coast are influenced by the shoaling effect so that the reversibility of linear system can not be directly applied to Coastal areas.Therefore, the overall Inversion procedure on this study consists of two parts; the first one is that the usage of variable coefficient Korteweg-de Vries (vKdV) equation and the Coalescence theory inverses the data gathered by the Coastal tide stations to the water level data where the depth is more than 50m on the linear region, and compares the above results with the stimulation and confirms the accuracy of the inversed waveform;The second one is that according to the reversibility of the linear system the use of least squares and least squares QR- decomposition (LSQR) method reproduce the initial tsunami wave source that compares with the initial tsunami wave source by stimulating and has a very good conformity. The seismic parameters can be easily decided by the above results.
43

Modelování globálních barotropních oceánských slapů v časové oblasti / Time-domain modelling of global barotropic ocean tides

Einšpigel, David January 2017 (has links)
Traditionally, ocean tides have been modelled in frequency domain with forcing of selected tidal constituents. It is a natural approach, however, non-linearities of ocean dynamics are implicitly neglected. An alternative approach is time-domain modelling with forcing given by the full lunisolar potential, i.e., all tidal constituents are included. This approach has been applied in several ocean tide models, however, a few challenging tasks still remain to solve, for example, the assimilation of satellite altimetry data. In this thesis, we present DEBOT, a global and time-domain barotropic ocean tide model with the full lunisolar forcing. DEBOT has been developed "from scratch". The model is based on the shallow water equations which are newly derived in geographical (spherical) coordinates. The derivation includes the boundary conditions and the Reynolds tensor in a physically consistent form. The numerical model employs finite differences in space and a generalized forward-backward scheme in time. The validity of the code is demonstrated by the tests based on integral invariants. DEBOT has two modes for ocean tide modelling: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. We introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing...
44

Variedades inerciais em um modelo atmosférico de Lorenz

Domínguez Rodríguez, Jorge Luis January 2006 (has links)
Estimativas de erro são estabelecidas em termos do número de Rossby para a aproximação de Galerkin não linear nas soluções do modelo atmosférico balanceado de Lorenz com massa forçante. Desse modo a aproximação espectral da aproximação de Galerkin não linear é ligada ao número de Rossby. / Error estimates are established in terms of the Rossby number for a nonlinear Galerkin approximation to the solutions of the balanced atmosphere model of Lorenz with mass forcing. Thereby, the approximation spectral dimension of the nonlinear Galerkin approximation is linked to the Rossby number.
45

Variedades inerciais em um modelo atmosférico de Lorenz

Domínguez Rodríguez, Jorge Luis January 2006 (has links)
Estimativas de erro são estabelecidas em termos do número de Rossby para a aproximação de Galerkin não linear nas soluções do modelo atmosférico balanceado de Lorenz com massa forçante. Desse modo a aproximação espectral da aproximação de Galerkin não linear é ligada ao número de Rossby. / Error estimates are established in terms of the Rossby number for a nonlinear Galerkin approximation to the solutions of the balanced atmosphere model of Lorenz with mass forcing. Thereby, the approximation spectral dimension of the nonlinear Galerkin approximation is linked to the Rossby number.
46

Uma aplicação do método espectral no estudo das equações de águas rasas em meio heterogênio. / An application of the spectral method in the study of shallow water equations in heterogenous medium.

LIMA, Hallyson Gustavo Guedes de Morais. 11 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-11T21:36:37Z No. of bitstreams: 1 HALLYSON GUSTAVO GUEDES DE MORAIS LIMA - DISSERTAÇÃO PPGMAT 2007..pdf: 2962280 bytes, checksum: 027c0c4dc68684f41c7b168cacb0b228 (MD5) / Made available in DSpace on 2018-07-11T21:36:37Z (GMT). No. of bitstreams: 1 HALLYSON GUSTAVO GUEDES DE MORAIS LIMA - DISSERTAÇÃO PPGMAT 2007..pdf: 2962280 bytes, checksum: 027c0c4dc68684f41c7b168cacb0b228 (MD5) Previous issue date: 2007-03 / CNPq / Neste trabalho deduzimos o sistema de Equações de Águas Rasas na forma Lagrangeana e obtemos a sua solução analítica. Aplicamos o Método Espectral na análise numérica deste sistema e mostramos que a propagação de ondas de águas rasas não depende do meio em que ela se propaga. / In this work we deduce the system of Shallow Water Equations in the Lagrangian form and we obtain its analytical solution. We have applied the spectral method in the numerical analysis of this system and we have shown that the propagation of the shallow water waves doesn't depend on the medium in which it spreads.
47

Variedades inerciais em um modelo atmosférico de Lorenz

Domínguez Rodríguez, Jorge Luis January 2006 (has links)
Estimativas de erro são estabelecidas em termos do número de Rossby para a aproximação de Galerkin não linear nas soluções do modelo atmosférico balanceado de Lorenz com massa forçante. Desse modo a aproximação espectral da aproximação de Galerkin não linear é ligada ao número de Rossby. / Error estimates are established in terms of the Rossby number for a nonlinear Galerkin approximation to the solutions of the balanced atmosphere model of Lorenz with mass forcing. Thereby, the approximation spectral dimension of the nonlinear Galerkin approximation is linked to the Rossby number.
48

Modelování atmosférické cirkulace exoplanet / Modelling of exoplanetary atmospheric circulation

Novák, Jiří January 2014 (has links)
In this thesis we study the properties of exoplanetary atmospheres. The first part describes methods and instruments for searching exoplanets, statistics of discovered exoplanets and the sampling factor. The second part describes the properties of chosen planets and moons in the Solar system (Venus, Mars and Titan) and also possible properties of the exoplanetary atmospheres that are only briefly understood. The third part describes the atmospheric models which incorporate full 3D model of the atmosphere, dynamical core, shallow-water model and 1D spherically-symmetric model. We also show the results of exoplanetary atmospheric models published in the scientific journals. This part also describes the icosahedral geodetic grid that is advantageous for the global climatic models, and also discretisation on sphere and the application of the operators (gradient, divergence, vorticity) on geodetic grid. The fourth part discusses results of the numerical solution of the atmospheric circulation with the forcing on geodetic grid. In this part we also show global maps of the variables after a particular time of the numerical integration and also the evolution of the variables at chosen points in time. In the discussion part we examine the results of our program. The results of the numerical integrations (chosen...
49

Two-way Coupled Multiscale Tsunami Modelling from Generation to Coastal Zone Hydrodynamics / 双方向結合マルチスケールモデルによる波源から沿岸域までの津波解析

William, James Pringle 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19677号 / 工博第4132号 / 新制||工||1638(附属図書館) / 32713 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 五十嵐 晃, 准教授 米山 望, 准教授 森 信人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
50

Incorporating Remotely Sensed Data into Coastal Hydrodynamic Models: Parameterization of Surface Roughness and Spatio-Temporal Validation of Inundation Area

Medeiros, Stephen Conroy 01 January 2012 (has links)
This dissertation investigates the use of remotely sensed data in coastal tide and inundation models, specifically how these data could be more effectively integrated into model construction and performance assessment techniques. It includes a review of numerical wetting and drying algorithms, a method for constructing a seamless digital terrain model including the handling of tidal datums, an investigation into the accuracy of land use / land cover (LULC) based surface roughness parameterization schemes, an application of a cutting edge remotely sensed inundation detection method to assess the performance of a tidal model, and a preliminary investigation into using 3-dimensional airborne laser scanning data to parameterize surface roughness. A thorough academic review of wetting and drying algorithms employed by contemporary numerical tidal models was conducted. Since nearly all population centers and valuable property are located in the overland regions of the model domain, the coastal models must adequately describe the inundation physics here. This is accomplished by techniques that generally fall into four categories: Thin film, Element removal, Depth extrapolation, and Negative depth. While nearly all wetting and drying algorithms can be classified as one of the four types, each model is distinct and unique in its actual implementation. The use of spatial elevation data is essential to accurate coastal modeling. Remotely sensed LiDAR is the standard data source for constructing topographic digital terrain models (DTM). Hydrographic soundings provide bathymetric elevation information. These data are combined to form a seamless topobathy surface that is the foundation for distributed coastal models. A three-point inverse distance weighting method was developed in order to account for the spatial variability of bathymetry data referenced to tidal datums. This method was applied to the Tampa Bay region of Florida in order to produce a seamless topobathy DTM. Remotely sensed data also contribute to the parameterization of surface roughness. It is used to develop land use / land cover (LULC) data that is in turn used to specify spatially distributed bottom friction and aerodynamic roughness parameters across the model domain. However, these parameters are continuous variables that are a function of the size, shape and density of the terrain and above-ground obstacles. By using LULC data, much of the variation specific to local areas is generalized due to the categorical nature of the data. This was tested by comparing surface roughness parameters computed based on field measurements to those assigned by LULC data at 24 sites across Florida. Using a t-test to quantify the comparison, it was proven that the parameterizations are significantly different. Taking the field measured parameters as ground truth, it is evident that parameterizing surface roughness based on LULC data is deficient. In addition to providing input parameters, remotely sensed data can also be used to assess the performance of coastal models. Traditional methods of model performance testing include harmonic resynthesis of tidal constituents, water level time series analysis, and comparison to measured high water marks. A new performance assessment that measures a model's ability to predict the extent of inundation was applied to a northern Gulf of Mexico tidal model. The new method, termed the synergetic method, is based on detecting inundation area at specific points in time using satellite imagery. This detected inundation area is compared to that predicted by a time-synchronized tidal model to assess the performance of model in this respect. It was shown that the synergetic method produces performance metrics that corroborate the results of traditional methods and is useful in assessing the performance of tidal and storm surge models. It was also shown that the subject tidal model is capable of correctly classifying pixels as wet or dry on over 85% of the sample areas. Lastly, since it has been shown that parameterizing surface roughness using LULC data is deficient, progress toward a new parameterization scheme based on 3-dimensional LiDAR point cloud data is presented. By computing statistics for the entire point cloud along with the implementation of moving window and polynomial fit approaches, empirical relationships were determined that allow the point cloud to estimate surface roughness parameters. A multi-variate regression approach was chosen to investigate the relationship(s) between the predictor variables (LiDAR statistics) and the response variables (surface roughness parameters). It was shown that the empirical fit is weak when comparing the surface roughness parameters to the LiDAR data. The fit was improved by comparing the LiDAR to the more directly measured source terms of the equations used to compute the surface roughness parameters. Future work will involve using these empirical relationships to parameterize a model in the northern Gulf of Mexico and comparing the hydrodynamic results to those of the same model parameterized using contemporary methods. In conclusion, through the work presented herein, it was demonstrated that incorporating remotely sensed data into coastal models provides many benefits including more accurate topobathy descriptions, the potential to provide more accurate surface roughness parameterizations, and more insightful performance assessments. All of these conclusions were achieved using data that is readily available to the scientific community and, with the exception of the Synthetic Aperture Radar (SAR) from the Radarsat-1 project used in the inundation detection method, are available free of charge. Airborne LiDAR data are extremely rich sources of information about the terrain that can be exploited in the context of coastal modeling. The data can be used to construct digital terrain models (DTMs), assist in the analysis of satellite remote sensing data, and describe the roughness of the landscape thereby maximizing the cost effectiveness of the data acquisition.

Page generated in 0.1418 seconds