• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 16
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 83
  • 83
  • 26
  • 22
  • 20
  • 14
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Použití kyanoakrylátového lepidla při ošetření insuficientní vena saphena magna a parva. / Cyanoacrylate in treatment of great and small saphenous vein.

Novotný, Karel January 2019 (has links)
Introduction: Cyanoacrylate gluing technique is the least strenuous treatment of varicose trunks which does not necessitate tumescent anaesthesia and post procedural stocking compression. In response to the long-term unavailability of commercial kits with N-butyl-2-cyanoacrylate (Histoacryl) in the Czech Republic, we used a modified technique, which is based on the technique of endovascular treatment of AV malformations in the brain and uses a mixture of cyanoacrylate and Lipiodol to clog. We evaluated the success of the method, complications and clinical improvement of chronic venous insufficiency. Parts of the work are histological findings of collected samples of veins at various time intervals. In an in vitro experiment, we compared the bond strength of a bonded shear to a tear device. The adhesive mix values used were compared with those of commercially available adhesives for this purpose. Patients and methods: Fifty-six limbs in 49 patients suffering from great saphenous vein or small saphenous vein insufficiency in combination with symptomatic chronic venous insufficiency and complicating comorbidities were treated with a modified endovascular cyanoacrylate glue application technique. A histopathological examination was conducted on vein samples from six. In each patient a sample of the...
32

Developing Constitutive Equations for Polymer Foams Under Cyclic Loading

Chen, Linling 11 December 2012 (has links)
No description available.
33

Investigation of Laboratory Test Procedures for Assessing the Structural Capacity of Geogrid-Reinforced Aggregate Base Materials

Knighton, Jaren Tolman 01 March 2015 (has links) (PDF)
The modulus of aggregate base layers in pavement structures can potentially be increased through the use of geogrid. However, methods for determining how much structural benefit can be expected from a given geogrid product have not been standardized. A laboratory testing protocol is therefore needed to enable evaluation, in terms of modulus or California bearing ratio (CBR), for example, of the degree of improvement that may be achieved by a given geogrid. Consequently, the objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Program Report 598 repeated load triaxial, American Association of State Highway and Transportation Officials (AASHTO) T 307 quick shear, and CBR testing protocols were used to test unreinforced and geogrid-reinforced aggregate base materials from northern Utah. Biaxial and triaxial geogrid were investigated in multiple reinforcement configurations. Several statistical analyses were performed on the results of each test method to identify the test that is most likely to consistently show an improvement in the structural capacity of aggregate base materials reinforced with geogrid. The results of this research indicate that, for the methods and materials evaluated in this study, calculation of the modulus at 2 percent strain from the AASHTO T 307 quick shear data is the test method most likely to consistently show an improvement in structural capacity associated with geogrid reinforcement. Of the three configurations investigated as part of this research, placing the geogrid at an upper position within a specimen is preferred. Given that the end goal of the use of geogrid reinforcement is to improve pavement performance, additional research is needed to compare the results of the AASHTO T 307 quick shear test obtained in the laboratory with the structural capacity of geogrid-reinforced aggregate base materials measured in the field. In addition, correlations between the results of the AASHTO T 307 quick shear test and resilient modulus need to be investigated in order to incorporate the findings of the AASHTO T 307 quick shear test on reinforced base materials into mechanistic-empirical pavement design.
34

Review of Earlier Thesis work at BTH Related to Packaging and Packaging Field

Ahmad, Abu ul Hasnat January 2021 (has links)
This work aims at giving a systematic review of the numerical approaches and obtained results published in recent years. Focus is set on both the recent trends and achievements as well as challenges and open questions. Thesis critically reviews work done in previous thesis related to food packaging material and design, at Blekinge Institute of Technology with the collaboration of Tetra Pak liquid food packaging company. Here, 27 numbers of master’s thesis are critical review all the while using 4 PHD works for referencing.  Focus of these thesis works relates to the mechanics and its sub-branch fracture mechanics. Due to this all the theory related to mechanics and fracture mechanics, which is compulsory to know for understanding is defined initially. Main material which are under consideration throughout the work are PP, LDPE, PET-LDPE, and aluminum foil. As three materials are used in the liquid food packaging which are PE, paper board and aluminum. Uses of this material and there required physical properties are measured. Testing methods which are used to check whether the material meets the required parameters are tensile testing, tear testing, peel testing and shear test.  Also, some methods are used along with these tests to perform the test more precisely, to evaluate and compare result i.e., Nakajima test, Digital image correlation. DIC testing technique is used to compare the results obtained from simulation. It is also understood that DIC method provided the user with increased quality of obtained results.  Most of the topics of discussions have been reviewed for corresponding thesis, displaying the used ideas, theory, applied experimentation and realized conclusions. Using these above it was able to derive a conclusion based on the developed research questions and hypothesis. Defined problems in previous work are studied also solution as a future work is suggested to overcome these problems. Mainly the slippage issue while holding PE in clamps. Furthermore, various development is discussed which is done to introduce new material which is more possible being used in the future.
35

Effects of Reservoir Releases on Slope Stability and Bank Erosion

Nam, Soonkie 30 June 2011 (has links)
Reservoir release patterns are determined by a number of purposes, the most fundamental of which is to manage water resources for human use. Managing our water resources means not only controlling the water in reservoirs but also determining the optimum release rate taking into account factors such as reservoir stability, power generation, water supply for domestic, industrial, and agricultural uses, and the river ecosystem. However, riverbank stability has generally not been considered as a factor, even though release rates may have a significant effect on downstream riverbank stability. Riverbank retreat not only impacts land properties but also damages structures along the river such as roads, bridges and even buildings. Thus, reservoir releases need to also take into account the downstream riverbank stability and erosion issues. The study presented here investigates the riverbank stability and erosion at five study sites representing straight as well as inside and outside channel meander bends located on the lower Roanoke River near Scotland Neck, North Carolina. Extensive laboratory and field experiments were performed to define the hydraulic and geotechnical properties of the riverbank soils at each site. Specifically, soil water characteristic curves were determined using six different techniques and the results compared to existing mathematical models. Hydraulic conductivity was estimated using both laboratory and in situ tests. Due to the wide range of experimentally obtained values, the values determined by each of the methods was used for transient seepage modeling and the modeling results compared to the actual ground water table measured in the field. The results indicate that although the hydraulic conductivities determined by in situ tests were much larger than those typically reported for the soils by lab tests, numerical predictions of the ground water table using the in situ values provided a good fit for the measured ground water table elevation. Shear strengths of unsaturated soils were determined using multistage suction controlled direct shear tests. The test method was validated, and saturated and unsaturated shear strength parameters determined. These parameters, which were determined on the basis of results from both laboratory and field measurements, and the associated boundary conditions, which took into account representative flow rates and patterns including peaking, drawdown and step-down scenarios, were then utilized for transient seepage analyses and slope stability analyses performed using SLIDE, a software package developed by Rocscience. The analyses confirmed that the riverbanks are stable for all flow conditions, although the presence of lower permeability soils in some areas may create excess pore water pressures, especially during drawdown and step-down events, that result in the slope becoming unstable in those locations. These findings indicate that overall, the current reservoir release patterns do not cause adverse impacts on the downstream riverbanks, although a gradual drawdown after a prolonged high flow event during the wet season would reduce unfavorable conditions that threaten riverbank stability. / Ph. D.
36

Étude du comportement d'un milieu rocheux fracturé : application à la réalisation du tunnel de St Béat (France 31) / Behaviour of a fractured rock mass : application to the realization of St Béat tunnel (France 31)

Hoang, Thi Than Nhan 08 December 2010 (has links)
La conception des ouvrages de génie civil dans les massifs rocheux fracturés nécessite une connaissance de leur comportement lors des travaux. Les ma ssifs fracturés sont généralement très complexes et représentés par des matrices et des discontinuités rocheuses. Cette thèse a pour objectif d'étudier le comportement mécanique du massif du futur tunnel de St Béat. La thèse est divisée en trois parties. Nous étudions tout d'abord les phénomènes prépondérants et les facteurs agissant sur le comportement mécanique des massifs rocheux. Dans la seconde partie, nous effectuons séparément des études expérimentales sur le comportement mécanique de la matrice et des discontinuités rocheuses. Enfin, dans la dernière partie, nous présentons une modélisation en 2D du comportement du massif fracturé lors du creusement du tunnel. L'étude expérimentale s'appuie sur des marbres rencontrés sur le site du tunnel. Le comportement de la matrice rocheuse est étudié à partir des essais de compression triaxiale sur des échantillons de roche saine. L'évolution de l'endommagement est caractérisée à l'aide des mesures de vitesses de propagation des ondes élastiques. Une enveloppe de rupture selon le critère linéaire de Mohr-Coulomb est proposée pour la matrice rocheuse. Le comportement au cisaillement des discontinuités naturelles est ensuite étudié sous différentes conditions de chargement (contrainte normale constante et rigidité normale imposée). La mesure de topographie des surfaces des discontinuités avant et après chaque essai mécanique permet de déterminer les paramètres statistiques de la rugosité. L'influence de la contrainte normale, la rigidité normale imposée, la rugosité initiale et la vitesse de cisaillement sur le comportement des discontinuités est mise en évidence. Des lois de comportement pertin entes sont proposées pour chaque type d'essais.Les caractéristiques mécaniques obtenues sont alors introduites dans le code de calcul UDEC afin de modéliser le comportement du massif en présence du tunnel, sous différentes conditions aux limites. La réponse en terme de déformations et de contraintes induites autour du tunnel est analysée / The design of civil engineering structures in fractured rock masses requires knowledge of their mechanical behavior. The fractured rock masses are usually very complex and separated in matrix and rock discontinuities. This thesis aims to study the mechanical behavior of St Beat tunnel rock mass. The thesis is divided into three parts. We study first the predominant phenomena and factors affecting the mechanical behavior of rock masses. In the second part, we perform separately experimental studies on the mechanical behavior of matrix and rock discontinuities. Finally, in the last section, we present a 2D model of the fractured rock mass behavior during the digging of the tunnel. The experimental study is based on the marbles encountered on the future tunnel site. The rock matrix behavior is studied using triaxial compression tests on intact rock samples. The damage evolution is characterized using propagation velocities measurements of elastic waves. A failure envelope by Mohr-Coulomb linear criterion is proposed for the rock matrix. The shear behavior of natural discontinuities is investigated under different loading conditions (normal stress or constant normal stiffness imposed). The discontinuities surfaces topography is measured before and after each mechanical test to determine the roughness statistical parameters. The influence of the normal stress, the normal stiffness, the initial roughness and the shear rate on the discontinuities behavior is demonstrated. A behavior law is proposed for each type of test.The mechanical properties obtained are introduced into the code UDEC to model the rock mass behavior with the presence of the tunnel, under different boundary conditions. The response in terms of deformations and stresses induced around the tunnel is analyzed
37

Modelo de atrito estático em interfaces de contato entre concreto e areia / A model for the static friction between concrete-sand interface contact

Reis, Jeselay Hemetério Cordeiro dos 30 March 2006 (has links)
Esta tese apresenta os princípios e a formulação de um modelo não-linear de atrito estático em interface de concreto areia. A hipótese básica para desenvolvimento das equações consiste na ocorrência do atrito de deslizamento (atrito verdadeiro), do atrito de rolamento (rearranjo das partículas) e da dilatância (variação de volume durante o cisalhamento). A solução analítica do modelo considera o efeito da rugosidade da superfície de contato, da curva granulométrica da areia e do seu estado de compacidade inicial. Foram realizados ensaios de cisalhamento direto com carga normal constante em interface de contato entre concreto e areia com seção de 500 mm x 500 mm com o objetivo de permitir a calibração do modelo proposto. É discutida e sugerida a incorporação da equação constitutiva desse modelo em análises de interação solo-estrutura via método dos elementos finitos. Sua aplicabilidade é demonstrada através da análise 1D e 2D de estacas de atrito executadas em areia e submetidas a carregamentos de compressão / This thesis presents the principles and formulation underlying a concrete-sand interface nonlinear static friction model. The basic hypothesis employed in the development of the model equation takes into account the interface sliding friction (true friction), a rolling friction (particle rearrangement) and dilatancy(volume variation during shear). The model analytical solution considers the effect of roughness of the contact surface, the grain size distribution and its initial state of compactness of the sand. To calibrate the proposed model, a direct shear stress test under constant load was carried out along a 500mm x 500mm section concrete-sand interface. Furthermore, a discussion and suggestion of the inclusion of the model constitutive equation applied to the analysis of soil-structure interaction using the finite element method are presented. The applicability of the proposed model is proven through the analysis of 1-D and 2-D skin friction piles made of sand mass subjected to compression load
38

Comparação dos ensaios de resistência adesiva por torção e por cisalhamento com fio / A comparison between torsion and wire-loop shear bond strength tests

Xavier, Tathy Aparecida 24 March 2010 (has links)
Objetivo: verificar, através de análise por elementos finitos e de uma etapa experimental, se o ensaio de torção, como ensaio de resistência de interfaces adesivas, seria capaz de levar os espécimes à ruptura sob tensões de cisalhamento e se ele seria vantajoso em relação ao ensaio de cisalhamento. Material e Método: para a análise de tensões pelo método dos elementos finitos, os modelos tridimensionais dos dois ensaios foram constituídos por cilindro de compósito, uma camada de adesivo e um cilindro de dentina com maior diâmetro. Os espécimes foram simulados nos tamanhos convencional e micro, numa proporção de 5:1, exceto pela camada de adesivo, de espessura constante. Foram simulados dois módulos de elasticidade do cilindro de compósito (híbrido e baixa viscosidade) e, para os modelos de cisalhamento, variaram as distâncias entre o local de carregamento e a interface adesiva. Foram analisados os valores das tensões máxima principal e cisalhamento máximo e a proporção entre elas ao longo da interface dentina/adesivo; a direção dos vetores de tensão máxima principal; e o local dos picos de tensão. Na etapa experimental, foram construídos cilindros de compósito (híbrido e de baixa viscosidade) nos tamanhos convencional e micro, aderidos a uma superfície de dentina bovina por meio de três sistemas adesivos. O esforço de cisalhamento foi aplicado com fio ortodôntico a uma distância da interface adesiva baseada na literatura e, para os ensaios de torção e microtorção, foram desenvolvidos dispositivos específicos para a aplicação do torque. Os resultados de tensão de ruptura foram submetidos à análise de variância e teste de Tukey. Todas as superfícies de fratura foram analisadas por meio de microscopia eletrônica de varredura. As frequências das fraturas adesivas e coesivas foram submetidas ao teste exato de Fisher e relacionadas aos valores de tensão de ruptura experimentais, bem como suas características foram relacionadas às tensões observadas pelo método dos elementos finitos. Os parâmetros experimentais de comparação entre os ensaios foram: poder de detecção de diferenças significantes entre os sistemas adesivos; constância da classificação relativa dos mesmos ao alterar as configurações dos ensaios e frequências dos tipos de fratura. Resultados: ambos os ensaios apresentaram um estado complexo de tensões com distribuição nãouniforme. Não foi notada menor sensibilidade dos resultados do ensaio de torção às mudanças das configurações do teste, nem uma maior capacidade para detectar diferenças significantes entre os adesivos do que o ensaio de cisalhamento. O ensaio de torção apresentou maior dificuldade de execução prática e maiores frequências de fraturas coesivas, porém, estas ocorreram mais no cilindro de compósito, enquanto no cisalhamento, ocorreram mais na dentina. Não houve certeza sobre o tipo de tensão que tenha levado à fratura nos dois tipos de ensaio. Conclusões: embora não se tenha certeza se o ensaio de torção leva à ruptura sob tensões de cisalhamento e tenham sido notadas desvantagens práticas de execução do ensaio, este apresenta uma característica que sugere novos estudos: ocorrência de fraturas coesivas principalmente no cilindro de compósito, o que poderia, talvez, ser resolvido com o reforço do material do cilindro. / Objective: verify, by finite element analysis (FEA) and laboratorial tests, if the torsion bond strength test is able to lead adhesive interface to fracture under shear stress and if it would be more advantageous than wire-loop shear test. Material and method: for stress analysis by finite element method, the 3D models of both tests consisted of a resin composite cylinder, an adhesive layer and a dentin cylinder with a larger diameter. The specimens were simulated with both conventional and micro sizes, in a 5:1 ratio, except for the adhesive layer, kept in a constant thickness. Two values of elastic modulus were simulated for the composite cylinder (hybrid and flowable). For the shear models, different distances were simulated between the load point and the adhesive interface. The values of maximum principal and maximum shear stresses and the ratio between both types were analyzed along the adhesive interface, as well as the maximum principal vectors direction and the local of stress peaks. For the laboratorial tests, cylinders of hybrid and flowable resin composite, in both micro and conventional sizes, were adhered onto dentin surfaces by means of 3 adhesive systems. The shear load was applied with a metallic wire-loop at distances from the interface based on literature and, for the torsion test, the torque was applied by specific apparatus developed for that. The values of bond strength were submitted to analysis of variance and Tukeys test. Fracture surfaces were analyzed by scan electron microscopy. The frequencies of fracture types were compared by Fishers test and its relationship with bond strength values were verified, as well as the relationship between fracture features and stresses results obtained by FEA. The experimental parameters for comparison between both tests were: ability for detecting significant differences among the 3 adhesives, change of adhesives ranking while varying the test configuration and frequency of fracture types. Results: both tests showed non-uniform stress distribution. It was not noticed a lower sensibility of torsion test results to changes of the test configurations, nor a major ability for detecting significant differences among the adhesive systems than showed the shear test. The torsion test showed to be more difficult to execute and exhibited a higher frequency of cohesive fracture, however, that occurred most of the time in the composite cylinder, while it occurred mainly in dentin in shear test. There was no certainty about the kind of stress that lead to specimen fracture in both tests. Conclusions: although there was no certainty about the kind of stress that lead to specimen fracture and the major difficulty of execution of torsion test, this test exhibited a feature that suggests future studies: the occurrence of cohesive fracture mainly in the composite cylinder, which could be solved, maybe, by reinforcing the cylinder material.
39

Increasing Damping Capacity of Shear Walls with Glued-Nail Joints / Ökning av dämpningen hos skjuvväggar med limmade spikförband

Karlsson, Fredrik, Ramic, Zlatan, Tartes, Karl January 2012 (has links)
The purpose of this master thesis has been to investigate the possibility to increase the damping capacity of shear walls with the use of glue in combination with nails. It has been done with experiment and with FE-simulations.   The first experimental part is tensile tests of four different glue types which have been analyzed to get material data. The second experimental part is analysis of glued-nail joint in shear test. FE-simulations of glued-nail joints are finally done in Abaqus/CAE.   The experiments in shear tests of glued-nail joints showed that two glues failed and could not be used for further analysis. The two other glues had an increase in damping capacity compared with results from nail joint.   Further FE-simulations of glued-nailed joints have to be done in order to calibrate the FE-model with the results of glued-nailed joints in shear tests. The uncertainty is found in the material properties of the glue, experimental test data was not adequate. The conclusion is that glued-nail joints can increase the damping capacity in shear walls. / Damping capacity, shear wall, hysteresis, shear test, finite element method, Abaqus/CAE
40

Matrix-dominated constitutive laws for composite materials

He, Yihong 06 July 2010 (has links)
Accurate three-dimensional stress-strain constitutive properties are essential to understanding complex deformation and failure mechanisms for materials with highly anisotropic mechanical properties. The large number of different methods and specimen types currently required to generate three-dimensional allowables for structural design slow down the material characterization. Also, some of the material constitutive properties are never measured due to prohibitive cost of the specimens needed. A method for measurement of three-dimensional constitutive properties using short-beam specimens subject to three-point bend load has been recently developed. This method is based on the Digital Image Correlation (DIC) full-field deformation measurement and closed-form stress approximation. The purpose of this work is to improve the accuracy of the constitutive properties through accurate stress solution. A method is developed based on a combination of full-field strain measurement and nonlinear finite element stress analysis in the material characterization. The nonlinear shear stress-strain relations are the major concern in this work. An iterative procedure is applied to update the nonlinear shear properties using iterative finite element simulations. The accuracy of the numerical procedure is verified by comparing the finite element strain results with full-field measurements. The procedure is further verified using the V-notched beam test results. Excellent agreement has been achieved in the verification. Simplicity of the short-beam specimens and accuracy of the constitutive property approximations make the present method attractive for measurement of three-dimensional stress-strain relations for anisotropic materials at various load rates.

Page generated in 0.0633 seconds