• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 17
  • 15
  • 14
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Local-Global Compatibility and the Action of Monodromy on nearby Cycles

Caraiani, Ana 19 December 2012 (has links)
In this thesis, we study the compatibility between local and global Langlands correspondences for \(GL_n\). This generalizes the compatibility between local and global class field theory and is related to deep conjectures in algebraic geometry and harmonic analysis, such as the Ramanujan-Petersson conjecture and the weight monodromy conjecture. Let L be a CM field. We consider the case when \(\Pi\) is a cuspidal automorphic representation of \(GL_n(\mathbb{A}_L^\infty)\), which is conjugate self-dual and regular algebraic. Under these assumptions, there is an l-adic Galois representation \(R_l(\Pi)\) associated to \(\Pi\), which is known to be compatible with the local Langlands correspondence in most cases (for example, when n is odd) and up to semisimplification in general. In this thesis, we complete the proof of the compatibility when \(l \neq p\) by identifying the monodromy operator N on both the local and the global sides. On the local side, the identification amounts to proving the Ramanujan-Petersson conjecture for \(\Pi\) as above. On the global side it amounts to proving the weight-monodromy conjecture for part of the cohomology of a certain Shimura variety. / Mathematics
12

The supersingular locus of the Shimura variety of GU (1, s)

Vollaard, Inken-Kareen. Unknown Date (has links) (PDF)
University, Diss., 2005--Bonn.
13

Stratification de Newton des variétés de Shimura et formule des traces d’Arthur-Selberg / The Newton stratification of Shimura varieties and the Arthur-Selberg trace formula

Kret, Arno 10 December 2012 (has links)
Nous étudions la stratification de Newton des variétés de Shimura de type PEL aux places de bonne réduction. Nous considérons la strate basique de certaines variétés de Shimura simples de type PEL modulo une place de bonne réduction. Sous des hypothèses simplificatrices nous prouvons une relation entre la cohomologie l-adique de ce strate basique et la cohomologie de la variété de Shimura complexe. En particulier, nous obtenons des formules explicites pour le nombre de points dans la strate basique sur des corps finis, en termes de représentations automorphes. Nous obtenons les résultats à l'aide de la formule des traces et de la troncature de la formule de Kottwitz pour le nombre de points sur une variété de Shimura sur un corps fini. Nous montrons, en utilisant la formule des traces, que n'importe quelle strate de Newton d'une variété de Shimura de type PEL de type (A) est non vide en une place de bonne réduction. Ce résultat a déjà été établi par Viehmann-Wedhorn; nous donnons une nouvelle preuve de ce théorème. Considérons la strate basique des variétés de Shimura associées à certains groupes unitaires dans les cas où cette strate est une variété finie. Alors, nous démontrons un résultat d' équidistribution pour les opérateurs de Hecke agissant sur cette strate. Nous relions le taux de convergence avec celui de la conjecture de Ramanujan. Dans nos formules ne figurent que des représentations automorphes cuspidales sur Gl_n pour lesquelles cette conjecture est connue, et nous obtenons donc des estimations très bonnes sur la vitesse de convergence. En collaboration avec Erez Lapid nous calculons le module de Jacquet d'une représentation en échelle pour tout sous-groupe parabolique standard du groupe général linéaire sur un corps local non-archimédien. / We study the Newton stratification of Shimura varieties of PEL type, at the places of good reduction. We consider the basic stratum of certain simple Shimura varieties of PEL type at a place of good reduction. Under simplifying hypotheses we prove a relation between the l-adic cohomology of this basic stratum and the cohomology of the complex Shimura variety. In particular we obtain explicit formulas for the number of points in the basic stratum over finite fields, in terms of automorphic representations. We obtain our results using the trace formula and truncation of the formula of Kottwitz for the number of points on a Shimura variety over a finite field. We prove, using the trace formula that any Newton stratum of a Shimura variety of PEL-type of type (A) is non-empty at a prime of good reduction. This result is already established by Viehmann-Wedhorn; we give a new proof of this theorem. We consider the basic stratum of Shimura varieties associated to certain unitary groups in cases where this stratum is a finite variety. Then, we prove an equidistribution result for Hecke operators acting on the basic stratum. We relate the rate of convergence to the bounds from the Ramanujan conjecture of certain particular cuspidal automorphic representations on Gl_n. The Ramanujan conjecture turns out to be known for these automorphic representations, and therefore we obtain very sharp estimates on the rate of convergence. We prove that any connected reductive group G over a non-Archimedean local field has a cuspidal representation. Together with Erez Lapid we compute the Jacquet module of a Ladder representation at any standard parabolic subgroup of the general linear group over a non-Archimedean local field.
14

Sur certains aspects géométriques et arithmétiques des variétés de Shimura orthogonales / On some geometrical and arithmetical aspects of orthogonal Shimura varieties

Tayou, Salim 17 June 2019 (has links)
Cette thèse a pour objet l'étude de quelques propriétés arithmétiques et géométriques des variétés de Shimura orthogonales. Ces variétés apparaissent naturellement comme espaces de modules de structures de Hodge de type K3. Dans certains cas, elles paramètrent des objets géométriques tels que les surfaces K3 et leurs analogues en dimensions supérieures, les variétés hyperkähleriennes. Ce point de vue modulaire sera notre fil conducteur tout au long de ce mémoire. Ainsi, dans la première partie, on démontre un résultat d'équirépartition du lieu de Hodge dans les variations de structures de Hodge de type K3 au dessus d'une courbe complexe quasi-projective. Dans la deuxième partie, on étudie des analogues arithmétiques du résultat précédent. Un exemple d'énoncés qu'on obtient est le suivant: étant donnée une surface K3 définie sur un corps de nombres et ayant partout bonne réduction, alors sous certaine hypothèse d'approximation, il existe une spécialisation telle que le nombre de Picard géométrique croît strictement. Dans la troisième partie, on relie les problèmes du saut de nombre de Picard dans les familles de surfaces K3 à la question de construction de courbes rationnelles sur ces surfaces. Enfin, on étend un résultat de Bogomolov et Tschinkel. On montre notamment que toute surface K3 définie sur un corps algébriquement clos de caractéristique quelconque et admettant une fibration elliptique non-isotriviale contient une infinité de courbes rationnelles. / This thesis deals with some arithmetical and geometrical aspects of orthogonal Shimura varieties. These varieties appear naturally as moduli spaces of Hodge structures of K3 type. In some cases, they parametrize geometric objects as K3 surfaces and their analogous in higher dimensions, the hyperkähler varieties. This modular point of view will be our guiding principle throughout this dissertation. In the first part, we prove an equidistribution result of the Hodge locus in variations of Hodge structures of K3 type above complex quasi-projective curves. In the second part, we study analogous results in the arithemtic setting. An example of statements we get is the following: given a K3 surface having everywhere good reduction and satisfying an approximation hypothesis, there exists a specialization with strictly increasing geometric Picard rank. In both cases, our methods take advantage of the rich arithmetic, automorphic and geometric structure of orthogonal Shimura varieties as well as the Kuga-Satake construction that links them to moduli spaces of abelian varieties. Finally, we extend a result of Bogomolov and Tschinkel. In particular, we show that any K3 surface defined over an algebraically closed field of arbitrary characteristic and admitting a non-isotrivial elliptic fibration contains infinitely many rational curves.
15

Valeurs exceptionnelles de fonctions transcendantes

Desrousseaux, Pierre-Antoine Cohen, Paula. January 2002 (has links)
Thèse de doctorat : Mathématiques : Lille 1 : 2002. / N° d'ordre (Lille) : 3112. Bibliogr. p. 101-103.
16

Cyclic coverings, Calabi-Yau manifolds and complex multiplication

Rohde, Jan Christian January 2007 (has links)
Zugl.: Duisburg, Essen, Univ., 2007
17

Cyclic coverings, Calabi-Yau manifolds and complex multiplication

Rohde, Jan Christian. January 2009 (has links)
Univ., Diss., 2007--Duisburg-Essen. / Literaturverz. S. 223 - 225.
18

Tautological rings of Shimura varieties

Cooper, Simon January 2022 (has links)
This licentiate thesis consists of two papers. In paper I the tautological ring of a Hilbert modular variety at an unramified prime is computed. The method of van der Geer in the case of A_{g} is extended to deal with the case of the Hilbert modular variety, which is more complicated. An example involving the unitary group is given which shows that this method cannot be used to compute the tautological rings of all Shimura varieties of Hodge type. In paper II we compute the pushforward map from a sub flag variety defined by a Levi subgroup to the Siegel flag variety. Specifically, this is the Levi factor of the parabolic associated with the maximal rational boundary component of the Siegel Shimura datum. The method involves an explicit understanding of the pullback map and an application of the self intersection formula.
19

Birational geometry and compactifications of modular varieties and arithmetic of modular forms / モジュラー多様体の双有理幾何学とコンパクト化及びモジュラー形式の数論について

Maeda, Yota 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24385号 / 理博第4884号 / 新制||理||1699(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 雪江 明彦, 教授 池田 保 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
20

On the nonvanishing of central L-values associated to Hecke eigenforms

Fotis, Sam Joseph 26 December 2014 (has links)
No description available.

Page generated in 0.0214 seconds