Spelling suggestions: "subject:"shock waves"" "subject:"shock saves""
241 |
From Transformation to Therapeutics : Diverse Biological Applications of Shock WavesGanadhas, Divya Prakash January 2014 (has links) (PDF)
Chapter–I Introduction
Shock waves appear in nature whenever the different elements in a fluid approach one another with a velocity larger than the local speed of sound. Shock waves are essentially non-linear waves that propagate at supersonic speeds. Such disturbances occur in steady transonic or supersonic flows, during explosions, earthquakes, tsunamis, lightening strokes and contact surfaces in laboratory devices. Any sudden release of energy (within few μs) will invariably result in the formation of shock wave since it is one of the efficient mechanisms of energy dissipation observed in nature. The dissipation of mechanical, nuclear, chemical, and electrical energy in a limited space will result in the formation of a shock wave. However, it is possible to generate micro-shock waves in laboratory using different methods including controlled explosions. One of the unique features of shock wave propagation in any medium (solid, liquid or gases) is their ability to instantaneously enhance pressure and temperature of the medium. Shock waves have been successfully used for disintegrating kidney stones, non-invasive angiogenic therapy and osteoporosis treatment. In this study, we have generated a novel method to produce micro-shock waves using micro-explosions. Different biological applications were developed by further exploring the physical properties of shock waves.
Chapter – II Bacterial transformation using micro-shock waves
In bacteria, uptake of DNA occurs naturally by transformation, transduction and conjugation. The most widely used methods for artificial bacterial transformation are procedures based on CaCl2 treatment and electroporation. In this chapter, controlled micro-shock waves were harnessed to develop a unique bacterial transformation method. The conditions have been optimized for the maximum transformation efficiency in E. coli. The highest transformation efficiency achieved (1 × 10-5 transformants per cell) was at least 10 times greater than the previously reported ultrasound mediated transformation (1 × 10-6 transformants per cell). This method has also been successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella Typhimurium. This novel method of transformation has been shown to be as efficient as electroporation with the added advantage of better recovery of cells, economical (40 times cheaper than commercial electroporator) and growth-phase independent transformation.
Chapter – III Needle-less vaccine delivery using micro-shock waves
Utilizing the instantaneous mechanical impulse generated behind the micro-shock wave during controlled explosion, a novel non-intrusive needleless vaccine delivery system has been developed. It is well established, that antigens in the epidermis are efficiently presented by resident Langerhans cells, eliciting the requisite immune response, making them a good target for vaccine delivery. Unfortunately, needle free devices for epidermal delivery have inherent problems from the perspective of patient safety and comfort. The penetration depth of less than 100 µm in the skin can elicit higher immune response without any pain. Here the efficient utilization of the device for micro-shock wave mediated vaccination was demonstrated. Salmonella enterica serovar Typhimurium vaccine strain pmrG-HM-D (DV-STM-07) was delivered using our device in the murine salmonellosis model and the effectiveness of the delivery system for vaccination was compared with other routes of vaccination. The device mediated vaccination elicits better protection as well as IgG response even in lower vaccine dose (ten-fold lesser), compare to other routes of vaccination.
Chapter – IV In vitro and in vivo biofilm disruption using shock waves
Many of the bacteria secrete highly hydrated framework of extracellular polymer matrix on encountering suitable substrates and get embedded within the matrix to form biofilm. Bacterial colonization in biofilm form is observed in most of the medical devices as well as during infections. Since these bacteria are protected by the polymeric matrix, antibiotic concentration of more than 1000 times of the MIC is required to treat these infections. Active research is being undertaken to develop antibacterial coated medical implants to prevent the formation of biofilm. Here, a novel strategy to treat biofilm colonization in medical devices and infectious conditions by employing shock waves was developed. Micro-shock waves assisted disintegration of Salmonella, Pseudomonas and Staphylococcus biofilm in urinary catheters was demonstrated. The biofilm treated with micro-shock waves became susceptible to antibiotics, whereas the untreated was resistant. Apart from medical devices, the study was extended to Pseudomonas lung infection model in mice. Mice exposed to shock waves responded well to ciprofloxacin while ciprofloxacin alone could not rescue the mice from infection. All the mice survived when antibiotic treatment was provided along with shock wave exposure. These results clearly demonstrate that shock waves can be used along with antibiotic treatment to tackle chronic conditions resulting from biofilm formation in medical devices as well as biological infections.
Chapter – V Shock wave responsive drug delivery system for therapeutic application
Different systems have been used for more efficient drug delivery as well as targeted delivery. Responsive drug delivery systems have also been developed where different stimuli (pH, temperature, ultrasound etc.) are used to trigger the drug release. In this study, a novel drug delivery system which responds to shock waves was developed. Spermidine and dextran sulfate was used to develop the microcapsules using layer by layer method. Ciprofloxacin was loaded in the capsules and we have used shock waves to release the drug. Only 10% of the drug was released in 24 h at pH 7.4, whereas 20% of the drug was released immediately after the particles were exposed to shock waves. Almost 90% of the drug release was observed when the particles were exposed to shock waves 5 times. Since shock waves can be used to induce angiogenesis and wound healing, Staphylococcus aureus skin infection model was used to show the effectiveness of the delivery system. The results show that shock wave can be used to trigger the drug release and can be used to treat the wound effectively.
A brief summary of the studies that does not directly deal with the biological applications of shock waves are included in the Appendix. Different drug delivery systems were developed to check their effect in Salmonella infection as well as cancer. It was shown for the first time that silver nanoparticles interact with serum proteins and hence the antimicrobial properties are affected. In a nutshell, the potential of shock waves was harnessed to develop novel experimental tools/technologies that transcend the traditional boundaries of basic science and engineering.
|
242 |
Shock Excited 1720 MHz MasersDe Witt, Aletha 31 December 2005 (has links)
1720 MHz OH masers have been detected towards a number of supernova remnants (SNRs) at the shock interface where the SNR slams into the interstellar medium. Models indicate that these masers are shock excited and can only be produced under tight constraints of the physical conditions. In particular, the masers can only form behind a C-type shock. Jets from newlyformed
stars plow into the surrounding gas, creating nebulous regions known as Herbig Haro (HH) objects. Signatures of C-type shocks have been found in many HH objects. If conditions behind the shock fronts of HH objects are able to support 1720 MHz OH masers they would be a usefull diagnostic tool for star formation. A survey toward HH objects detected a number of 1720 MHz OH lines in emission, but future observations with arrays are required
to confirm the presence of masers. / Physics / M.Sc. (Astronomy)
|
243 |
The response of submerged structures to underwater blastSchiffer, Andreas January 2013 (has links)
The response of submerged structures subject to loading by underwater blast waves is governed by complex interactions between the moving or deforming structure and the surrounding fluid and these phenomena need to be thoroughly understood in order to design structural components against underwater blast. This thesis has addressed the response of simple structural systems to blast loading in shallow or deep water environment. Analytical models have been developed to examine the one-dimensional response of both water-backed and air-backed submerged rigid plates, supported by linear springs and loaded by underwater shock waves. Cavitation phenomena as well as the effect of initial static fluid pressure are explicitly included in the models and their predictions were found in excellent agreement with detailed FE simulations. Then, a novel experimental apparatus has been developed, to reproduce controlled blast loading in initially pressurised liquids. It consists of a transparent water shock tube and allows observing the structural response as well as the propagation of cavitation fronts initiated by fluid-structure interaction in a blast event. This experimental technique was then employed to explore the one-dimensional response of monolithic plates, sandwich panels and double-walled structures subject to loading by underwater shock waves. The performed experiments provide great visual insight into the cavitation process and the experimental measurements were found to be in good agreement with analytical predictions and dynamic FE results. Finally, underwater blast loading of circular elastic plates has been investigated by theoretically modelling the main phenomena of dynamic plate deformation and fluid-structure interaction. In addition, underwater shock experiments have been performed on circular composite plates and the obtained measurements were found in good correlation with the corresponding analytical predictions. The validated analytical models were then used to determine the optimal designs of circular elastic plates which maximise the resistance to underwater blast.
|
244 |
Temperatureffekte bei der lasererzeugten Kavitation / Thermal effects in laser-generated cavitationSöhnholz, Hendrik 26 October 2016 (has links)
No description available.
|
245 |
Sur la compréhension des phénomènes de couplage fluide-structure dans les propulseurs de fuséeDevesvre, Julie 13 December 2011 (has links)
Dans les propulseurs de fusée, des instabilités aéroacoustiques et des interactions de type fluide-structure sont à l'origine de fortes oscillations de poussées pouvant déranger la poussée du moteur mais également causer des dommages non négligeables. On trouve dans les moteurs de fusée des protections thermiques de face (PTF) coincées entre les pains de propergol. Leurs déplacements se trouvent être la principale cause des interactions fluide structure (IFS) présentes dans les booster. Dans ce contexte, nous avons développé une approche numérique visant à simuler les problèmes d'IFS. Notre méthode se base sur le couplage de deux codes dissociés : l'écoulement est simulé avec CARBUR tandis que la dynamique des structures déformables est traitée par MARCUS. Une loi de comportement hyperélastique a été implémentée dans CARBUR afin de simuler le mouvement des PTF. Une campagne expérimentale a été menée dans notre laboratoire sur le tube à chocs T80 et en guide de validation du couplage des codes, les résultats numériques et expérimentaux ont été confrontés. / In a solid rocket motor, high pressure oscillations induced by aeroacoustic instabilities and fluid structure interaction (FSI) may lead to disturb rocket thrust and cause damages. In the rocket motors, flexible inhibitors made of insulating material are initially bonded to the propellant, and FSI is mainly induced by their displacement. In this context, a numérical approach to simulate FSI problems has been developped. Our method is based on the coupling of two dissociated codes : fluid flow is computed with CARBUR, while the dynamics of deformable structures is simulated by MARCUS. A hyperelastic behaviour law has been implemented in MARCUS in order to simulate the movement of flexible inhibitors. An experimental approach has been leaded in the shock waves tubes (T80) in our laboratory and as a validation of FSI coupling codes, numerical and experimental results have been compared.
|
246 |
Elaboration d'un modèle d'écoulements turbulents en faible profondeur : application au ressaut hydraulique et aux trains de rouleaux / Elaboration of a model of turbulent shallow water flows : application to the hydraulic jump and roll waves.Richard, Gael 25 November 2013 (has links)
On dérive un nouveau modèle d’écoulements cisaillés et turbulents d’eau peu profonde. Les écarts de la vitesse horizontale par rapport à sa valeur moyenne sont pris en compte par une nouvelle variable appelée enstrophie, liée à la vorticité et à l’énergie turbulente. Le modèle comporte trois équations qui sont les bilans de masse, de quantité de mouvement et d’énergie. Le modèle est hyperbolique et peut être écrit sous forme conservative. L’énergie turbulente, dont l’intensité peut être importante, est produite par les ondes de choc qui apparaissent naturellement dans le modèle. Les écoulements rapidement variés étudiés sont caractérisés par l’existence d’une structure turbulente appelée rouleau dans laquelle la dissipation d’énergie turbulente joue un rôle majeur. Cette dissipation, qui détermine notamment le profil de profondeur, est modélisée par l’introduction d’un terme nouveau dans le bilan d’énergie. Le modèle comporte deux paramètres. L’un gouverne la dissipation de l’énergie turbulente du rouleau. L’autre paramètre, l’enstrophie de paroi, liée au cisaillement sur le fond, peut être considéré comme constant dans la partie rapidement variée d’un écoulement, sur laquelle il exerce une influence assez faible. Ce modèle a été appliqué avec succès aux vagues des trains de rouleaux et au ressaut hydraulique classique. Le profil de la surface libre est en très bon accord avec les résultats expérimentaux. L’étude numérique en régime non stationnaire permet notamment de prédire le régime oscillatoire du ressaut hydraulique. La fréquence d’oscillations correspondante est en accord satisfaisant avec les mesures expérimentales de la littérature. / We derive a new model of turbulent shear shallow water flows. The deviation of the horizontal velocity from its average value is taken into account by a new variable called enstrophy, which is related to the vorticity and to the turbulent energy. The model consists of three equations which are the balances of mass, momentum and energy. The model is hyperbolic and can be written in conservative form. The turbulent energy, which can be of high intensity, is produced in shock waves which appear naturally in the model. The rapidly varied flows we studied are characterized by the presence of a turbulent structure called roller in which the turbulent energy dissipation plays a major part. This dissipation, which determines, in particular, the depth profile, is modelled by the introduction of a new term in the energy balance equation. The model contains two parameters. The first one governs the dissipation of the turbulent energy of the roller. The second one, the wall enstrophy, related to the shearing at the bottom, can be considered as constant in the rapidly varied part of the flow on which it does not exert an important influence. This model was successfully applied to roll waves and to the classical hydraulic jump. The free surface profile was found in very good agreement with the experimental results. The numerical study in the non-stationary case can notably predict the oscillations of the hydraulic jump. The corresponding oscillation frequency is in good agreement with the experimental measures found in the literature.
|
247 |
Theoretical and Numerical Investigation of Nonlinear Thermoacoustic, Acoustic, and Detonation WavesPrateek Gupta (6711719) 02 August 2019 (has links)
Finite amplitude perturbations in compressible media are ubiquitous in scientific and engineering applications such as gas-turbine engines, rocket propulsion systems, combustion instabilities, inhomogeneous solids, and traffic flow prediction models, to name a few. Small amplitude waves in compressible fluids propagate as sound and are very well described by linear theory. On the other hand, the theory of nonlinear acoustics, concerning high-amplitude wave propagation (Mach<2) is relatively underdeveloped. Most of the theoretical development in nonlinear acoustics has focused on wave steepening and has been centered around the Burgers' equation, which can be extended to nonlinear acoustics only for purely one-way traveling waves. In this dissertation, theoretical and computational developments are discussed with the objective of advancing the multi-fidelity modeling of nonlinear acoustics, ranging from quasi one-dimensional high-amplitude waves to combustion-induced detonation waves. <br> <br> We begin with the theoretical study of spectral energy cascade due to the propagation of high amplitude sound in the absence of thermal sources. To this end, a first-principles-based system of governing equations, correct up to second order in perturbation variables is derived. The exact energy corollary of such second-order system of equations is then formulated and used to elucidate the spectral energy dynamics of nonlinear acoustic waves. We then extend this analysis to thermoacoustically unstable waves -- i.e. amplified as a result of thermoacoustic instability. We drive such instability up until the generation of shock waves. We further study the nonlinear wave propagation in geometrically complex case of waves induced by the spark plasma between the electrodes. This case adds the geometrical complexity of a curved, three-dimensional shock, yielding vorticity production due to baroclinic torque. Finally, detonation waves are simulated by using a low-order approach, in a periodic setup subjected to high pressure inlet and exhaust of combustible gaseous mixture. An order adaptive fully compressible and unstructured Navier Stokes solver is currently under development to enable higher fidelity studies of both the spark plasma and detonation wave problem in the future. <br>
|
248 |
Formação de sólitons em condensados de Bose-Einstein e em meios ópticos / Formation of solitons in Bose-Einstein condensates and in photorefractive mediaKhamis, Eduardo Georges 13 October 2010 (has links)
Diferentes tipos de sólitons têm sido observados em meios ópticos não-lineares, e seus comportamentos individuais descritos pela equação não-linear de Schrödinger e pela equação não-linear de Schrödinger generalizada, em diferentes dimensões e geometrias. Entretando, há situações onde muitos sólitons são gerados formando uma densa rede de sólitons. Nestes casos, é impossível desprezar as interações entre os sólitons e temos que considerar a evolução da estrutura como um todo. A teoria das ondas de choque dispersivas em meios fotorrefrativos e a teoria da difração não-linear de intensos feixes de luz propagando-se em meios fotorrefrativos com um fio refletor incorporado a esse meio foi desenvolvida, e verificamos que está em excelente acordo com nossas simulações numéricas. No caso da formação de sólitons em condensados, fizemos cálculos numéricos realísticos dentro da aproximação de campo médio usando a equação de Gross-Pitaevskii, incluindo também um potencial de confinamento, um potencial móvel e um potencial dipolar. A maioria dos resultados puderam ser comparados com experimentos recentes. / Different kinds of solitons have already been observed in various nonlinear optical media, and their behavior has been explained in the frameworks of such mathematical models as the nonlinear Schrödinger and generalized nonlinear Shrödinger equations for different dimensions and geometries. However, there are situations when many solitons are generated so that they can comprise a dense soliton train. In such situations, it is impossible to neglect interactions between solitons and one has to consider the evolution of the structure as a whole rather than to trace the evolution of each soliton separately. The theory of optical shock waves in photorefractive media and the theory of nonlinear diffraction of light beams propagating in photorefractive media with embedded reflecting wire was developed and agrees very well with our numerical simulations. In the condensate soliton formation case, we did numerical calculations in the mean field approach using the Gross-Pitaevskii equation, adding a trap potential and a moving potential and a potential of the dipole-dipole interaction. The main results were also checked by recent experiments.
|
249 |
Solução numérica das equações de Euler para representação do escoamento transônico em aerofólios / Numerical solution of the Euler equations for representation of transonic flows over airfoilsCamilo, Elizangela 28 March 2003 (has links)
O estudo de métodos de modelagem de escoamentos aerodinâmicos em regime transônico é de grande importância para a engenharia aeronáutica. O maior desafio no tratamento desses escoamentos está na sua característica não linear devido aos efeitos de compressibilidade e formação de ondas de choque. Tais efeitos não lineares influenciam no desempenho de superfícies aerodinâmicas em geral, bem como são responsáveis pelo aparecimento de fenômenos danosos para a resposta aeroelástica de aeronaves. O equacionamento para esses tipos de escoamentos pode ser obtido via as equações básicas da mecânica dos fluidos. No entanto, apenas soluções numéricas de tais equações são possíveis de ser obtidas de forma prática no presente momento. Para o caso específico do tratamento de problemas transônicos, as equações de Euler formam um conjunto de equações diferenciais a derivadas parciais capazes de capturar os efeitos não lineares de escoamentos compressíveis, porém os efeitos da viscosidade não são levados em consideração. O objetivo desse trabalho é implementar uma rotina computacional capaz de resolver numericamente escoamentos em regime transônico em torno de aerofólios. Para isso as equações de Euler não lineares são utilizadas e o campo de fluido ao redor de um perfil aerodinâmico é discretizado pelo método das diferenças finitas. Uma malha estruturada do tipo C discretizando o fluido ao redor de um aerofólio NACA0012 é considerada. A metodologia para solução numérica é baseada no método explícito de MacCormack de segunda ordem de precisão no tempo e espaço. Baseados na aproximação upwind, termos de dissipação artificial com coeficientes não lineares também são adicionados ao método. A solução do escoamento transônico estacionário ao redor do aerofólio NACA0012 é obtida e as principais propriedades do escoamento são apresentadas. Observa-se a formação de ondas de choque através de contornos de número de Mach ao redor do aerofólio. Gráficos das distribuições de pressão no intra e extradorso do aerofólio são mostrados, onde se identificam aos efeitos da brusca variação de pressão devido as ondas de choque. Os resultados são validados com valores de distribuição de pressão para o mesmo aerofólio encontradas na literatura técnica. Os resultados obtidos combinam bem com os fornecidos em códigos computacionais para solução do mesmo problema aerodinâmico / The study of aerodynamic modeling methods for the transonic flow regime is of great importance in aeronautical engineering. Major challenge on the treatment of those flows is on their nonlinear features due to compressibility effects and shock waves (appearance). Such nonlinear effects present a strong influence on aerodynamic performance, as well as they are responsible for harmful aeroelastic response phenomena in aircraft. Equations for transonic flows can be obtained from the basic fluid mechanic equations. However, only numerical methods are able to attain practical solutions for those set of differential equations at the present moment. For the specific case of treating transonic flow problems, the nonlinear Euler equations provide a set of partial differential equations with features to capture nonlinear effects of typical compressible flows, despite of not accounting for viscous flows effects. The aim of this work is to implement a computational routine for the numerical solution of transonic flows around airfoils. The Euler equations are used and the flow field around a aerodynamic profile is discretized by finite difference method. A C-type structured mesh is used to discretize the flow around a NACA0012 airfoil. The methodology for numerical solution is based on the explicit MacCormack method which has second order accuracy in time and space. Based on the upwind approximation, artificial dissipation with nonlinear coefficients is incorporated to the method. The steady transonic flow around the NACA0012 airfoil numerical solution is assessed and the main flow properties are presented. Shock wave structure can also be observed by means of the Mach number contours around the airfoil. Pressure distributions on upper and lower surfaces for different flow conditions are also shown, thereby allowing the observation of the effects of the abrupt pressure change due to shock waves. The results are validated using data presented in the technical literature. The present code solutions agree well with the solution obtained in other computational codes used for the same problem
|
250 |
Ondas de choque em condensados de Bose-Einstein e espalhamento inelástico de átomos em um potencial de dois poços / Shock waves in Bose-Einstein condensates and inelastic scattering of atoms in a double wellAnnibale, Eder Santana 28 March 2011 (has links)
Nesta tese estudamos dois problemas diferentes na área de átomos ultra frios: Ondas de choque em condensados de Bose-Einstein e Espalhamento inelástico de átomos em um potencial de dois poços. No primeiro problema, estudamos o fluxo supersônico de um condensado de Bose-Einstein (BEC) através de um obstáculo macroscópico impenetrável delgado no sistema da equação de Schrödinger não-linear (NLS) bidimensional. Assumindo-se que a velocidade do fluxo é suficientemente alta, reduzimos assintoticamente o problema bidimensional original de valor de contorno para o fluxo estacionário através de um obstáculo alongado ao problema do pistão dispersivo unidimensional descrito pela NLS 1D dependente do tempo, no qual a coordenada original x reescalonada faz o papel de tempo e o movimento do pistão está vinculado à geometria do obstáculo. Duas ondas de choque dispersivas (DSWs) são geradas no fluxo, cada uma sendo formada em uma extremidade (frontal e traseira) do obstáculo. A DSW frontal é descrita analiticamente construindo-se soluções de modulação exatas para as equações de Whitham e a para a DSW traseira, empregamos a regra de quantização de Bohr-Sommerfeld generalizada para descrever a distribuição dos sólitons escuros. Propomos uma extensão da solução de modulação tradicional, a fim de incluir o padrão de ship-wave linear formado fora da região da DSW frontal. Realizamos simulações numéricas 2D completas e verificamos a validade das previsões analíticas. Os resultados deste problema podem ser relevantes para experimentos recentes sobre o fluxo de BECs através de obstáculos. No segundo problema, estudamos uma mistura atômica de dois átomos fermiônicos leves de spin 1/2 e dois átomos pesados em um potencial de dois poços. Processos de espalhamento inelástico entre ambas as espécies atômicas excitam os átomos pesados e renormalizam a taxa de tunelamento e a interação entre os átomos leves (efeito polarônico). A interação efetiva dos átomos leves muda de sinal e se torna atrativa quando o espalhamento inelástico é forte. Observamos também o cruzamento de níveis de energia, de um estado onde cada poço contém apenas um férmion (espalhamento inelástico fraco) para um estado onde um poço contém um par de férmions e ou outra está vazio (espalhamento inelástico forte). Identificamos o efeito polarônico e o cruzamento dos níveis de energia estudando-se a dinâmica quântica do sistema. / In this thesis we study two different problems in the field of ultracold atoms: Shock waves in Bose-Einstein condensates and Inelastic scattering of atoms in a double well. In the first problem, we study the supersonic flow of a Bose-Einstein condensate (BEC) past a slender impenetrable macroscopic obstacle in the framework of the twodimensional (2D) defocusing nonlinear Schr¨odinger equation (NLS). Assuming the oncoming flow speed sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x-coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half-planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ship-wave pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles. In the second problem, we study a mixture of two light spin-1/2 fermionic atoms and two heavy atoms in a double well potential. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate and the interaction of the light atoms (polaron effect). The effective interaction of the light atoms changes its sign and becomes attractive for strong inelastic scattering. This is accompanied by a crossing of the energy levels from singly occupied sites at weak inelastic scattering to a doubly occupied and an empty site for stronger inelastic scattering. We are able to identify the polaron effect and the level crossing in the quantum dynamics.
|
Page generated in 0.0629 seconds