• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multi-scale modeling of radiation effects for emerging space electronics : from transistors to chips in orbit / Modélisation multi-échelle des effets radiatifs pour l'électronique spatiale émergente : des transistors aux puces en orbite

Malherbe, Victor 17 December 2018 (has links)
En raison de leur impact sur la fiabilité des systèmes, les effets du rayonnement cosmique sur l’électronique ont été étudiés dès le début de l’exploration spatiale. Néanmoins, de récentes évolutions industrielles bouleversent les pratiques dans le domaine, les technologies standard devenant de plus en plus attrayantes pour réaliser des circuits durcis aux radiations. Du fait de leurs fréquences élevées, des nouvelles architectures de transistor et des temps de durcissement réduits, les puces fabriquées suivant les derniers procédés CMOS posent de nombreux défis. Ce travail s’attelle donc à la simulation des aléas logiques permanents (SEU) et transitoires (SET), en technologies FD-SOI et bulk Si avancées. La réponse radiative des transistors FD-SOI 28 nm est tout d’abord étudiée par le biais de simulations TCAD, amenant au développement de deux modèles innovants pour décrire les courants induits par particules ionisantes en FD-SOI. Le premier est principalement comportemental, tandis que le second capture des phénomènes complexes tels que l’amplification bipolaire parasite et la rétroaction du circuit, à partir des premiers principes de semi-conducteurs et en accord avec les simulations TCAD poussées.Ces modèles compacts sont alors couplés à une plateforme de simulation Monte Carlo du taux d’erreurs radiatives (SER) conduisant à une large validation sur des données expérimentales recueillies sous faisceau de particules. Enfin, des études par simulation prédictive sont présentées sur des cellules mémoire et portes logiques en FD-SOI 28 nm et bulk Si 65 nm, permettant d’approfondir la compréhension des mécanismes contribuant au SER en orbite des circuits intégrés modernes / The effects of cosmic radiation on electronics have been studied since the early days of space exploration, given the severe reliability constraints arising from harsh space environments. However, recent evolutions in the space industry landscape are changing radiation effects practices and methodologies, with mainstream technologies becoming increasingly attractive for radiation-hardened integrated circuits. Due to their high operating frequencies, new transistor architectures, and short rad-hard development times, chips manufactured in latest CMOS processes pose a variety of challenges, both from an experimental standpoint and for modeling perspectives. This work thus focuses on simulating single-event upsets and transients in advanced FD-SOI and bulk silicon processes.The soft-error response of 28 nm FD-SOI transistors is first investigated through TCAD simulations, allowing to develop two innovative models for radiation-induced currents in FD-SOI. One of them is mainly behavioral, while the other captures complex phenomena, such as parasitic bipolar amplification and circuit feedback effects, from first semiconductor principles and in agreement with detailed TCAD simulations.These compact models are then interfaced to a complete Monte Carlo Soft-Error Rate (SER) simulation platform, leading to extensive validation against experimental data collected on several test vehicles under accelerated particle beams. Finally, predictive simulation studies are presented on bit-cells, sequential and combinational logic gates in 28 nm FD-SOI and 65 nm bulk Si, providing insights into the mechanisms that contribute to the SER of modern integrated circuits in orbit
22

Design and characterization of BiCMOS mixed-signal circuits and devices for extreme environment applications

Cardoso, Adilson Silva 12 January 2015 (has links)
State-of-the-art SiGe BiCMOS technologies leverage the maturity of deep-submicron silicon CMOS processing with bandgap-engineered SiGe HBTs in a single platform that is suitable for a wide variety of high performance and highly-integrated applications (e.g., system-on-chip (SOC), system-in-package (SiP)). Due to their bandgap-engineered base, SiGe HBTs are also naturally suited for cryogenic electronics and have the potential to replace the costly de facto technologies of choice (e.g., Gallium-Arsenide (GaAs) and Indium-Phosphide (InP)) in many cryogenic applications such as radio astronomy. This work investigates the response of mixed-signal circuits (both RF and analog circuits) when operating in extreme environments, in particular, at cryogenic temperatures and in radiation-rich environments. The ultimate goal of this work is to attempt to fill the existing gap in knowledge on the cryogenic and radiation response (both single event transients (SETs) and total ionization dose (TID)) of specific RF and analog circuit blocks (i.e., RF switches and voltage references). The design approach for different RF switch topologies and voltage references circuits are presented. Standalone Field Effect Transistors (FET) and SiGe HBTs test structures were also characterized and the results are provided to aid in the analysis and understanding of the underlying mechanisms that impact the circuits' response. Radiation mitigation strategies to counterbalance the damaging effects are investigated. A comprehensive study on the impact of cryogenic temperatures on the RF linearity of SiGe HBTs fabricated in a new 4th-generation, 90 nm SiGe BiCMOS technology is also presented.

Page generated in 0.1098 seconds