• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 48
  • 34
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 511
  • 511
  • 131
  • 117
  • 106
  • 92
  • 86
  • 75
  • 72
  • 66
  • 62
  • 55
  • 54
  • 50
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Cargo Transport By Myosin Va Molecular Motors Within Three-Dimensional In Vitro Models Of The Intracellular Actin Cytoskeletal Network

Lombardo, Andrew Thomas 01 January 2018 (has links)
Intracellular cargo transport involves the movement of critical cellular components (e.g. vesicles, organelles, mRNA, chromosomes) along cytoskeletal tracks by tiny molecular motors. Myosin Va motors have been demonstrated to play a vital role in the transport of cargos destined for the cell membrane by navigating their cargos through the three-dimensional actin networks of the cell. Transport of cargo through these networks presents many challenges, including directional and physical obstacles which teams of myosin Va-bound to a single cargo must overcome. Specifically, myosin Va motors are presented with numerous actin-actin intersections and dense networks of filaments which can act as a physical barrier to transport. Due to the complexities of studying myosin Va cargo transport in cells, much effort has been focused on the in vitro observation and analysis of myosin Va transport along single actin filaments or simple actin cytoskeletal models. However, these model systems often rely on non-physiological cargos (e.g. beads, quantum dots) and two-dimensional arrangements of actin attached to glass surfaces. Interestingly, a disconnect exists between the transport of cargo on these simple model systems and studies of myosin Va transport on suspended 3D actin arrangements or cellular networks which show longer run lengths, increased velocities, and straighter, more directed trajectories. One solution to this discrepancy is that the cell may use the fluidity of the cargo surface, the recruitment of myosin Va motor teams, and the 3D geometry of the actin, to finely tune the transport of intracellular cargo depending on cellular need. To understand how myosin Va motors transport their cargo through 3D networks of actin, we investigated myosin Va motor ensembles transporting fluorescent 350 nm lipid-bilayer cargo through arrangements of suspended 3D actin filaments. This was accomplished using single molecule fluorescent imaging, three-dimensional super resolution Stochastic Optical Reconstruction Microscopy (STORM), optical tweezers, and in silico modeling. We found that when moving along 3D actin filaments, myosin motors could be recruited from across the fluid lipid cargo’s surface to the filaments which enabled dynamic teams to be formed and explore the full actin filaments binding landscape. When navigating 3D actin-actin intersections these teams capable of maneuvering their cargo through the intersection in a way that encouraged the vesicles to continue straight rather than switch filaments and turn at the intersection. We hypothesized that this finding may be the source of the relatively straight directed runs by myosin Va-bound cargo observed in living cells. To test this, we designed 3D actin networks where the vesicles interacted with 2-6 actin filaments simultaneously. Actin forms polarized filaments, which, in cells, generally have their plus-ends facing the exterior of the cell; the same direction in which myosin Va walks. We found that to maintain straight directed trajectories and not become stationary within the network, vesicles needed to move along filaments with a bias in their polarity. This allows for cargo-bound motors to align their motion along the polarized networks and produced productive motion despite physical and directional obstacles. Together this work demonstrates the physical properties of the cargo, the geometric arrangement of the actin, and the mechanical properties of the motor are all critical aspects of a robust myosin Va transport system.
152

Discrimination and Sequencing of Polymers with Biological Nanopores / Interaction de polymères naturels et synthétiques avec des pores protéiques

Boukhet, Mordjane 19 November 2018 (has links)
La technique de détection à l'aide de nanopores au niveau de la molécule unique est l'une des plus puissantes pour l'analyse de diverses molécules, dont les polymères biologiques et synthétiques, les protéines et les peptides, les molécules de sucre ou les nanoparticules métalliques. Ces pores peuvent également servir de plate-forme pour l'étude de phénomènes physiques et biologiques fondamentaux. Dans le cadre de l'analyse de molécules, ce travail, expérimenté en utilisant la technique de la peinture de bicouche lipidique, porte principalement sur la détection des polymères et leur utilité pour sonder les processus fondamentaux des de l'α-hémolysine et de l'aérolysine.Le premier chapitre de résultats décrit l’analyse des flux à travers l'hémolysine et l'aérolysine à l’aide des polyéthylèneglycols (PEG) et des α-cyclodextrines, ainsi que les effets des sels de KCl et de LiCl sur l'interaction des PEG avec ces pores. L'une des principales conclusions est qu'il existe un flux électoosmotique plus fort dans l'aérolysine, responsable du transport des molécules neutres, les α-cyclodextrines. La seconde constatation concerne la dynamique des PEG avec les nanopores qui semblait être fortement dépendante du sel, montrant des différences drastiques de fréquence et de durée d’interaction en fonction de la tension pour les deux sels, bien que la détection de la masse de PEG dans les deux conditions indique que la nature de l'interaction avec le pore est similaire dans les deux types de sels.Le but des travaux présentés dans le deuxième chapitre de résultats était de détecter les polymères de précision et à trouver les meilleures conditions pouvant conduire à leur séquençage avec des nanopores. Des homopolymères et copolymères de poly(phosphodiester)s ont été sondés en utilisant l'hémolysine, l'aérolysine et MspA. Le premier type de polymères étudiés contenant une amorce 3-polythymidine et une suite de comonomères de type (0) a montré une forte interaction avec les pores qui a été interprétée comme la promotion de la liaison avec les pores, due à l'amorce d’ADN simple brin, combinée à une grande flexibilité du premier type de polymères. Les polymères qui contenaient des chaînes latérales alcyne et triazole se sont révélés avoir des interactions plus complexes, mais ont interagi pendant des durées plus courtes avec les pores indiquant qu'ils étaient plus rigides. Le second type de polymères semble s’agréger en solution du fait de l’interaction entre les chaînes latérales, ce qui prouve l’importance de la caractérisation de ces molécules en solution par diffusion de rayons, dans le cadre de la détection et finalement de leur séquençage.L'étude du troisième chapitre de résultats, a porté sur la dynamique de petits oligonucléotides avec le pore d’aerolysine. Les polyadénines (A3, A4, A5) ont montré une dynamique complexe d’interaction avec le pore, qui a été étudiée par l'analyse et la quantification des différentes propriétés des événements. L'ensemble du processus s'est avéré être régi par deux sites de liaison et des barrières énergétiques à l'intérieur du pore que les molécules doivent surmonter. Ces résultats ont été combinés à un modèle cinétique qui a permis une description complète de la liaison et de la translocation (ou son non succès) des polyadénines.Le dernier chapitre des résultats décrit l’interaction de plus grandes polyadénines (A6-A7-A8-A9-A10) avec l’aérolysine. L’analyse de l'amplitude des courants des blocs induits par l'adénine à l'intérieur de ce pore montre une interaction dépendante de l'orientation des molécules avec le pore. Cette interaction dépendante de l'orientation a commencé à apparaître pour la molécule A7 et est devenue l'effet dominant pour A9 et A10. En raison de la flexibilité de l'ANDsb, cet effet n'est pas observé pour les molécules de plus petite taille (A6 et inférieures) en raison de leur possibilité de réorientation à l'intérieur du pore. / The technique of detection with nanopores at the single molecule level, is one of the most powerful method for the analysis of various molecules, of which biological and synthetic polymers, proteins and peptides, sugar molecules or metal nanoparticles. These pores can also serve as a platform for the study of fundamental physical and biological phenomenons. In the context of molecule analysis, this work, which is experimented using the technique of planar lipid bilayer painting, focuses mainly on the detection of polymers and their utility to portray fundamental processes of the α-hemolysin and aerolysin biological nanopores.The first results chapter described the probing of flows through α-hemolysin and aerolysin using polyethylene glycols (PEGs) and α-cyclodextrines, and the effects of KCl and LiCl salts on the interaction of PEGs with these pores. One main finding was that there exists a stronger electoosmotic flow in aerolysin, responsible for the transport of the neutral molecules α-cyclodextrines. The second finding was that the dynamics of PEGs with the nanopores are strongly dependent on the salt, showing drastic differences of frequency and dwell times vs. voltage for the two salts, although, the results of detection of mass of PEGs pointed to the fact that the nature of the interaction with the pore is similar in both salts.The aim of the work presented in the second results chapter, was to detect precision polymers, and find the best conditions, which can lead to their sequencing with nanopores. The homo- an copolymers of poly(phosphodiester)s were probed using α-hemolysin, aerolysin and MspA. The first type of polymers investigated which contained a 3-polythymidine primer and a sequence of comonomers of type (0) showed a strong interaction with the pores that was interpreted as the promotion of ssDNA-primer to the binding with the pore, combined to a high flexibility of the first type of polymers. The polymers which contained alkyne and triazole side chains, were found to have more complex interactions, but interacted for shorter durations with the pore indicating them to be stiffer. The second type of polymers seemed to be clustering in solution due the interaction between side chains, which proved the importance of performing characterization of these molecules in solution using wave scattering in the context of detection and ultimately sequencing.The study of the third result chapter, focused on the dynamics of small oligonucleotides with the aerolysin pore. The interaction of polyadenines (A3, A4, A5) showed complex dynamics and kinetics with pore, which was investigated via analysis of the events pattern. The whole process was found to be governed by two binding sites and energy barriers inside the pore that the molecules have to overcome. These results were combined to a developed kinetic model which allowed a complete description of the binding and translocation (or failure of it) of these polyadenines.The last results chapter described the interaction of bigger polyadenines (A6-A7-A8-A9-A10) with the aerolysin nanopore. The analysis of amplitude of currents of the adenine-induced blocks inside this pore showed an orientation dependent interaction of the molecules with the pore. This orientation dependent interaction started to be apparent for the A7 molecule and became the dominant effect for A9 and A10. Due to the flexibility of ssDNA, this effect is not observed for smaller sized molecules (A6 and below) because of their possibility of reorientation while inside the pore.
153

Quantitative confocal imaging of nanoporous silica

Hu, Yan 01 May 2016 (has links)
Nanoporous materials have been widely used in the fields of biological and chemical sensing, chemical separation, heterogeneous catalysis and biomedicine due to their merits of high surface area-to-volume ratio, chemical and thermal stabilities, and flexible surface modification. However, as the nature of nanoporous materials, they are inherently heterogeneous in the micro- and nanoenvironments. The environmental heterogeneity plays a decisive role in determining the performance of various applications of nanoporous materials. In order to provide an in-depth understanding of the nanoporous materials, it is of great interest to investigate the environmental heterogeneity in them. Single molecule spectroscopy, combined the quantitative confocal fluorescence imaging which possesses the capability of optical sectioning, has demonstrated to be a powerful tool to approach the environmental heterogeneity inside nanoporous materials. Single molecule spectroscopy is an ultrasensitive technique for probing molecular transport and properties of individual molecules. This technique has been extensively used in the research of environmental heterogeneity in nanoporous materials since it removes the issues of ensemble averaging and directly approaches detailed information that is obscured in ensemble measurements. In order to proficiently interpret single molecule data, we developed a comprehensive methodology – single molecule counting – for characterizing molecular transport in nanoporous silica. With this methodology as a tool, the nanoenvironmental heterogeneity inside the nanopores of C18-derivatized silica particles was explored by probing single molecular diffusion inside the pores. By employing single molecule ratiometric spectroscopy and a solvatochromic fluorophore as viii reporter of local environment, the gradient in nanopolarity as well as the nanoviscosity along the C18 layer after the inclusion of solvent was uncovered. The chemical properties of solute molecules at the nanopore surface are ultimately controlled by the energetics of the solute-interface interactions. The imaging of distribution of energies would be a decisive approach to assess the fundamental heterogeneity of the interface. To this end, we investigated the ΔG distribution of C18-derivatized nanoporous silica particles with quantitative confocal imaging. The pixel-to-pixel and particle-to-particle analysis showed the existence of ΔG heterogeneity between particles as well as within individual particles. The heterogeneity in ΔG could be partially responsible for band broadening in chemical separations and significantly affect overall reaction yield when using nanoporous materials as solid support for heterogeneous catalysis.
154

New approaches in super-resolution microscopy / Nouvelles approches microscope de super-résolution

Yang, Bin 13 April 2015 (has links)
La première méthode vise à améliorer la vitesse d’imagerie de la microscopie super-résolue àtempérature ambiante pour des applications biologiques. En tant qu’une technique de scan, lamicroscopie STED a besoins d’être parallélisé pour faire de l’imagerie rapide en champ large. Nousavons obtenu une parallélisation massive de la microscopie STED en utilisant les réseaux d’optiqueavec une excitation en en champ large et une caméra rapide pour détection. Les images super-résoluesd’un champ de 3 μm par 3 μm sont acquises en scannant une maille élémentaire du réseau optique, quipeut être aussi petite que 290 nm * 290 nm. La microscopie Lattice-STED est démontrée avec unerésolution allant jusqu'à 70 nm à une cadence de 12,5 images par seconde.La deuxième méthode étend la microscopie super-résolue à la température de l’hélium liquide pourdes applications aux technologies quantiques. Des résolutions optiques à l'échelle nanométrique desémetteurs quantique est une étape cruciale vers le contrôle des états délocalisés formés par lesinteractions fortes et cohérentes entre des émetteurs. Dans ce contexte, nous avons développé unetechnique de microscopie à des températures cryogéniques, dénommée la microscopie Essat. Cettetechnique est basée sur la saturation optique de l'état excité des molécules fluorescentes uniques parl’excitation d’un faisceau en forme d’anneau. Une résolution moins de 10 nm est obtenue avec debasses intensités d'excitation, plus de millions de fois plus faibles que celles utilisées dans lamicroscopie STED à la température ambiante. Par rapport aux approches basées sur la superlocalisation,notre technique offre une occasion unique de résoudre sous la limite de diffraction lesmolécules uniques ayant des fréquences de résonance optiques qui se chevauchent. Ceci ouvre la voieà l'étude des interactions cohérentes entre émetteurs uniques et à la manipulation de leur degréd'intrication. / The first technique aims at improving the imaging speed of super-resolution microscopy at roomtemperature for biological applications. As a scanning technique, STED (Stimulated EmissionDepletion) microscopy needs parallelization for fast wide-field imaging. Using well-designed opticallattices for depletion together with wide-field excitation and a fast camera for detection, we achievelarge parallelization of STED microscopy. Wide field of view super-resolved images are acquired byscanning over a single unit cell of the optical lattice, which can be as small as 290 nm * 290 nm.Lattice-STED imaging is demonstrated with a resolution down to 70 nm at 12.5 frames per second.The second one extends super-resolution microscopy to liquid helium temperature for applications inquantum technologies. Optical resolution of solid-state single quantum emitters at the nanometer scaleis a challenging step towards the control of delocalized states formed by strongly and coherentlyinteracting emitters. ESSat (Excited State Saturation) microscopy operating at cryogenic temperaturesis based on optical saturation of the excited state of single fluorescent molecules with a doughnutshapedbeam. Sub-10 nm resolution is achieved with extremely low excitation intensities, more thanmillion times lower than those used in room temperature STED microscopy. Compared to superlocalisationapproaches, our technique offers a unique opportunity to super-resolve single moleculeshaving overlapping optical resonance frequencies, paving the way to the study of coherent interactionsbetween single emitters and to the manipulation of their degree of entanglement.
155

Biomarker Assay Development and Sensing with Solid-State Nanopores

Beamish, Eric 01 October 2019 (has links)
Broadly speaking, the work herein discussed encompasses the development of biomolecular assays for biomarker detection. Specific to the assays in this thesis is the design of reaction schemes that consider the unique requirements of one class of single-molecule sensors in particular: solid-state nanopores formed using a novel fabrication and conditioning technique discovered during this research at the University of Ottawa. We present three unique assays for the detection of different biomolecular targets. The first uses a class of DNA origami structures termed nanoswitches to translate the presence of a short segment of single-stranded DNA Zika virus biomarker to a large configurational change in a double-stranded DNA scaffold. The signal amplification inherent in this topological change allowed us to a achieve a high degree of specificity for detecting a small nucleic acid target by requiring two separate binding events. Furthermore, through careful design of the configurational change, the number of topological states that a solid-state nanopore can sense is limited, providing unambiguous signals in ionic current recordings. Quantification of the Zika gene was performed by sensing the relative amounts of nanoswitches in looped and linear configurations from only hundreds of individual molecules. We then explored the sensitivity of solid-state nanopores for detecting small molecular features along short DNA scaffolds. Leveraging the ability of our nanopores to detect the presence of these protrusions, we present results in which ATP, a molecule significantly too small to be directly detected by the nanopore sensor, initiated an aptamer-based DNA displacement reaction to form a protrusion along scaffolds, producing measurable changes in ionic current signatures in nanopore recordings. Finally, we present an assay in which a microRNA, a biomarker linked to various cancers, was detected through the conjugation of two probes, each of which contained a binding site to different segments of the microRNA. In addition to examining different probe set structures for optimal performance, our two-probe design aimed to improve specificity over conventional single-probe-based assays which only require one recognition step, while still providing unambiguous signals due to the greater-than-doubling in molecular complex size upon conjugation. Furthermore, the use of two individual small probes, rather than one large nanoswitch, increased the resolution with which we could differentiate microRNA concentrations. The assay enabled the quantification of six concentrations of microRNA spanning a single order of magnitude, in only several hundred events, and allowed us to take advantage of the reduced cost, material and labour, as well as increased nanopore capture rates, associated with small assembled molecules.
156

DNA Tools and Microfluidic Systems for Molecular Analysis

Jarvius, Jonas January 2006 (has links)
<p>Improved methods are needed to interrogate the genome and the proteome. Methods with high selectivity, wide dynamic range, and excellent precision, capable of simultaneously analyzing many biomolecules are required to decipher cellular function. This thesis describes a molecular and microfluidic toolbox designed with those criteria in mind. It also presents a tool for graphical representation of nucleic acid sequences.</p><p>Proximity ligation is a novel protein detection method that requires dual and proximate binding of two oligonucleotide-tagged affinity reagents to a protein or protein complex in order to elicit a signal. The responses from such recognition reactions are the formation of specific nucleic acid reporter molecules that are subsequently amplified and quantitatively detected. </p><p>A scalable microfluidic platform suitable for fluorescence detection, cell culture, and actuation is also described. The platform uses rapid injection molding to produce microstructures in thermoplastic materials. By applying a thin layer of silica to the structures, a lid made of silicone rubber coated onto a thermoplastic support can be covalently bonded to generate enclosed channels.</p><p>A method is presented for precise biomolecule counting, termed “amplified single-molecule detection”. The method preserves the discrete nature of biomolecules, converting specific molecular recognition events to fluorescence-labeled micrometer-sized objects that are enumerated in microfluidic channels. </p><p>I also present a novel microarray-based detection method. To attain high selectivity and a wide dynamic range, the method is based on dual recognition with enzymatic discrimination and amplification. Upon target recognition in solution, DNA probes are subjected to thousand-fold amplification in solution, followed by selective detection on arrays and another hundred-fold amplification of reporter molecule created from the first amplification reaction. </p><p>Lastly, I describe a novel graphical representation of nucleic acid sequences using TrueType fonts that can be of value for visual inspection of DNA sequences and for teaching purposes</p>
157

Single-Molecule Detection and Optical Scanning in Miniaturized Formats

Melin, Jonas January 2006 (has links)
<p>In later years polymer replication techniques have become a frequently employed fabrication method for microfluidic and micro-optical devices. This thesis describes applications and further developments of microstructures replicated in polymer materials. </p><p>A novel method for homogenous amplified single-molecule detection utilizing a microfluidic readout format is presented. The method enables enumeration of single biomolecules by transforming specific molecular recognition events at nanometer dimensions to micrometer-sized DNA macromolecules. This transformation process is mediated by target specific padlock probe ligation, followed by rolling circle amplification (RCA) resulting in the creation of one rolling circle product (RCP) for each recognized target. Throughout this transformation the discrete nature of the molecular population is preserved. By hybridizing a fluorescence-labeled DNA detection oligonucleotide to each repeated sequence of the RCP, a confined cluster of fluorophores is generated, which makes optical detection and quantification possible. Spectral multiplexing is also possible since the spectral profile of each RCP can be analyzed separately. The microfluidic data acquisition process is characterized in detail and conditions that allow for quantification limited only by Poisson sampling statistics is established. The molecular characteristics of RCPs in solution are also investigated.</p><p>Furthermore a novel thermoplastic microfluidic platform is described. The platform allows for observation of the microchannels using high magnification optics and also offers the possibility of on-chip cell culture and the integration of mechanical actuators.</p><p>A novel fabrication process for the integration of polymer micro-optical elements on silicon is presented. The process is used for fabrication of a micro-optical system consisting of a laser and a movable microlens making beam steering possible. Such a micro-scanning system could potentially be used for miniaturized biochemical analysis.</p>
158

Biomolecular Analysis by Dual-Tag Microarrays and Single Molecule Amplification

Ericsson, Olle January 2008 (has links)
<p>Padlock probes and proximity ligation are two powerful molecular tools for detection of nucleic acids and proteins, respectively. Both methods result in the formation of DNA reporter molecules upon recognition of specific target molecules. These reporter molecules can be designed to include tag sequences that can be analyzed by techniques for nucleic acid analysis. Herein, I present a dual-tag microarray (DTM) platform that is suitable for high-performance analyses of DNA reporter molecule libraries, generated by padlock and proximity probing reactions. The DTM platform was applied for analysis of mRNA transcripts using padlock probes, and of cytokines using proximity ligation. The platform drastically improved specificity of detection, and it allowed precise measurements of proteins and nucleic acids over wide dynamic ranges.</p><p>The thesis also presents two techniques for multi-probe analyses of biomolecules: the triple-specific proximity ligation assay (3PLA) for protein analyses, and the spliceotyping assay for mRNA analyses. 3PLA allows highly specific measurements of as little as hundreds of target protein molecules by interrogating three target epitopes simultaneously. In spliceotyping the exon composition of individual transcripts are represented as a series of tag sequences in DNA reporter molecules, via a series of target-dependent ligation reactions. Next, the splicing patterns along individual transcripts can be revealed by amplified single molecule detection and step-wise decoding.</p>
159

MCP-1 Induces Rapid Formation of Tethered VLA-4 Bonds with Increased Resistance to Applied Forcein THP-1 Cells

Chu, Calvin 07 April 2011 (has links)
The chemokine, Monocyte Chemoattractant Protein (MCP-1), enhances integrin mediated monocyte adhesion to the vascular endothelium during inflammation. In this study, we demonstrate that MCP-1 promotes rapid sub-second adhesion of THP-1 cells to Vascular Cell Adhesion Molecule-1 (VCAM-1), but not to Intercellular Cell Adhesion Molecule-1 (ICAM-1). MCP-1 activates membrane tethered Very Late Antigen 4 (VLA-4, α4β1), but not necessarily cytoskeleton anchored VLA-4. Activated tethered VLA-4 bonds tremendously increased the period of time monocytes remain bound from hundreds of milliseconds to several seconds and also increased the distance over which immunologic surveillance occurs from several microns up to 20 microns along the endothelium. Lastly at the single molecule level, MCP-1 stimulated tethered VLA-4 bonds exhibit increased resistance to pulling force. In conclusion MCP-1 increased tethered VLA-4 bond resistance to force providing a mechanism for monocyte recruitment to the endothelium.
160

Nanomagnetic molecular materials based on the hexacyanometallate building block: the preparation and characterization of high-spin cluster and chain compounds

Berlinguette, Curtis Paul 29 August 2005 (has links)
The work presented herein describes efforts to synthesize and characterize cyanide-bridged molecular compounds with high-spin ground states. This investigation focused primarily on the assembly of hexacyanometallate units with convergent cationic metal complexes that are coordinated to capping ligands. In this manner, a family of related compounds was developed that serve as models for understanding the role of magnetic exchange interactions and anisotropy in nanomagnetic materials. The work presented in Chapter II describes the successful incorporation of the [Fe(CN)6]3- building block into planar geometries with nuclearities ranging from three to ten metal centers. In Chapter III, this methodology was optimized to yield two pentanuclear FeIII/NiII clusters, namely, the trigonal bipyramidal unit, {[Ni(tmphen)2]3[Fe(CN)6]2}, and the extended square, {[Ni(bpy)2(H2O)][Ni(bpy)2]2-[Fe(CN)6]2}. Magnetic measurements on pure phases of these samples revealed that each system exhibits ferromagnetic coupling between the L.S. FeIII and NiII centers, but neither exhibits slow paramagnetic relaxation effects down to T=2K. In Chapter IV, this chemistry was extended to the [Mn(CN)6]3-building block in order to increase magnetic exchange coupling and anisotropy in this cluster type, efforts that resulted in the isolation of the molecule, {[Mn(tmphen)2]3[Mn(CN)6]2}. This cluster exhibits intramolecular antiferromagnetic exchange interactions between the Mn centers which lead to an S=11/2 ground state and a negative ZFS value (D=-0.348 cm-1), parameters that support the experimental observation of Single-Molecule Magnet (SMM) behavior at low temperatures. A detailed investigation of the physical and structural properties of {[Co(tmphen)2]3[Fe(CN)6]2} in Chapters V and VI led to the realization that the cluster exhibits sensitivity to temperature and humidity. The molecule exists in three different electronic isomeric forms in the solid state and undergoes a charge-transfer induced spin-transition (CTIST) under the influence of temperature. The results presented in Chapter VI describe the behavior of this same cluster in solution, the highlight of which is the discovery that water reacts with the cluster to form a fourth electronic isomer. Finally, it is described in Chapter VII that this Co/Fe trigonal bipyramidal unit can be used as a building block for systematically incorporating three metal types into a family of 1-D chain and cluster compounds.

Page generated in 0.0507 seconds