• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 49
  • 34
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 515
  • 515
  • 133
  • 118
  • 106
  • 92
  • 87
  • 77
  • 73
  • 68
  • 62
  • 55
  • 54
  • 51
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Mechanizmy podílející se na aktivaci sodíkového transportu TIP peptidem odvozeným z faktoru nádorové nekrózy / Mechanisms involved in sodium uptake activation by the Tumor Necrosis Factor-derived TIP peptide

DULEBO, Alexander January 2012 (has links)
The Tumor Necrosis Factor derived-TIP peptide is a small 17 amino acids cyclic peptide with lectin-like activity, that possesses several therapeutically relevant biological activities, among which is activation of alveolar liquid clearance in both healthy and injured lungs in vivo. Accumulation of fluid in the lungs? alveoli and interstitial spaces is a life-threatening condition called pulmonary edema. The mortality rate due permeability pulmonary edema, accompanied by a dysfunction of the alveolar/capillary barrier, is high because no effective treatment lacking side effects exists nowadays. It is known that the TIP peptide is able to activate vectorial Na+ transport ? which mediates lung liquid clearance. However, the mechanism of action of remains elusive. The aim of this thesis was to investigate the initial steps of interaction between the TIP peptide and airway epithelial cells. Numerous novel methods and single-molecule techniques were used to unravel: (i) how the TIP peptide interacts with the molecules on the apical side of the lung epithelial cells; (ii) whether the TIP peptide need to be internalized inside of the cells to trigger its effects; (iii) the nature of the interaction between the TIP peptide and its putative receptor(s); (iv) the putative receptor(s) for the TIP peptide on the apical surface of the lung epithelial cells.
502

On-surface synthesis of acenes – / Oberflächensynthese von Acenen – organische nanoelektronische Materialien als Einzelmoleküle untersucht

Krüger, Justus 09 January 2018 (has links) (PDF)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
503

Syntéza π-elektronových systémů vhodných pro přenos a retenci náboje / The synthesis of π-electron systems suitable for transfer and retention of charges

Nejedlý, Jindřich January 2021 (has links)
The aim of my Thesis was to develop a general synthetic methodology for the preparation of long helicenes equipped with suitable functional groups that control their solubility or serve as anchoring groups for attachment to metallic surfaces, especially gold. The well-established transition metal catalyzed [2+2+2] cyclotrimerization of triynes was selected as the key scaffold-forming transformation in the synthesis of long helicenes because of its high regioselectivity, atom efficiency, functional group tolerance and general robustness. A modular approach was used for the preparation of the starting oligoynes, thus enabling a high level of their structural diversity. Individual resorcinol- based aromatic building blocks were interconnected by Sonogashira cross-coupling reactions, providing complex cyclization precursors encompassing up to twelve alkyne units pre-arranged for the multiple [2+2+2] cycloisomerization to produce three six- membered rings from each set of three neighboring alkyne units. Thus, a small series of long helicenes with up to 19 rings constituting the helical scaffold was synthesized. The quadruple cyclization leading to the longest oxahelicene prepared to date was performed in a high-temperature-high-pressure flow reactor at 250 řC in the presence of CpCo(CO)2. The set of...
504

Downhill folders in slow motion:: Lambda repressor variants probed by optical tweezers

Mukhortava, Ann 26 September 2017 (has links)
Die Proteinfaltung ist ein Prozess der molekularen Selbstorganisation, bei dem sich eine lineare Kette von Aminosäuren zu einer definierten, funktionellen dreidimensionalen Struktur zusammensetzt. Der Prozess der Faltung ist ein thermisch getriebener diffusiver Prozess durch eine Gibbs-Energie-Landschaft im Konformationsraum für die Struktur der minimalen Energie. Während dieses Prozesses zeigt die freie Enthalpie des Systems nicht immer eine monotone Abnahme; stattdessen führt eine suboptimale Kompensation der Enthalpie- und der Entropieänderung während jedes Faltungsschrittes zur Bildung von Freien-Enthalpie-Faltungsbarrieren. Diese Barrieren und damit verbundenen hochenergetischen Übergangszustände, die wichtige Informationen über Mechanismen der Proteinfaltung enthalten, sind jedoch kinetisch unzugänglich. Um den Prozess der Barrierebildung und die strukturellen Merkmale von Übergangszuständen aufzudecken, werden Proteine genutzt, die über barrierefreie Pfade falten – so genannte “downhill folder“. Aufgrund der geringen Faltungsbarrieren werden wichtige Interaktionen der Faltung zugänglich und erlauben Einblicke in die ratenbegrenzenden Faltungsvorgänge. In dieser Arbeit vergleichen wir die Faltungsdynamiken von drei verschiedenen Varianten eines Lambda-Repressor-Fragments, bestehend aus den Aminosäuren 6 bis 85: ein Zwei-Zustands-Falter λWT (Y22W) und zwei downhill-folder-artige Varianten, λYA (Y22W/Q33Y/ G46,48A) und λHA (Y22W/Q33H/G46,48A). Um auf die Kinetik und die strukturelle Dynamik zu greifen zu können, werden Einzelmolekülkraftspektroskopische Experimente mit optische Pinzetten mit Submillisekunden- und Nanometer-Auflösung verwendet. Ich fand, dass die niedrige denaturierende Kraft die Mikrosekunden Faltungskinetik von downhill foldern auf eine Millisekunden-Zeitskala verlangsamt, sodass das System für Einzelmolekülstudien gut zugänglich ist. Interessanterweise zeigten sich unter Krafteinwirkung die downhill-folder-artigen Varianten des Lambda-Repressors als kooperative Zwei-Zustands-Falter mit deutlich unterschiedlicher Faltungskinetik und Kraftabhängigkeit. Drei Varianten des Proteins zeigten ein hoch konformes Verhalten unter Last. Die modellfreie Rekonstruktion von Freien-Enthalpie-Landschaften ermöglichte es uns, die feinen Details der Transformation des Zwei-Zustands-Faltungspfad direkt in einen downhill-artigen Pfad aufzulösen. Die Auswirkungen von einzelnen Mutationen auf die Proteinstabilität, Bildung der Übergangszustände und die konformationelle Heterogenität der Faltungs- und Entfaltungszustände konnten beobachtet werden. Interessanterweise zeigen unsere Ergebnisse, dass sich die untersuchten Varianten trotz der ultraschnellen Faltungszeit im Bereich von 2 μs in einem kooperativen Prozess über verbleibende Energiebarrieren falten und entfalten, was darauf hindeutet, dass wesentlich schnellere Faltungsraten notwendig sind um ein downhill Limit vollständig zu erreichen.:I Theoretical background 1 1 Introduction 3 2 Protein folding: the downhill scenario 5 2.1 Protein folding as a diffusion on a multidimensional energy landscape 5 2.2 Downhill folding proteins 7 2.2.1 Thermodynamic description of downhill folders 7 2.2.2 Identification criteria for downhill folders 8 2.3 Lambda repressor as a model system for studying downhill folding 9 2.3.1 Wild-type lambda repressor fragment λ{6-85} 10 2.3.2 Acceleration of λ{6-85} folding by specifific point mutations 11 2.3.3 The incipient-downhill λYA and downhill λHA variants 14 2.4 Single-molecule techniques as a promising tool for probing downhill folding dynamics 17 3 Single-molecule protein folding with optical tweezers 19 3.1 Optical tweezers 19 3.1.1 Working principle of optical tweezers 19 3.1.2 The optical tweezers setup 21 3.2 The dumbbell assay 22 3.3 Measurement protocols 23 3.3.1 Constant-velocity experiments 23 3.3.2 Constant-trap-distance experiments (equilibrium experiments) 24 4 Theory and analysis of single-molecule trajectories 27 4.1 Polymer elasticity models 27 4.2 Equilibrium free energies of protein folding in optical tweezers 28 4.3 Signal-pair correlation analysis 29 4.4 Force dependence of transition rate constants 29 4.4.1 Zero-load extrapolation of rates: the Berkemeier-Schlierf model 30 4.4.2 Detailed balance for unfolding and refolding data 31 4.5 Direct measurement of the energy landscape via deconvolution 32 II Results 33 5 Efficient strategy for protein-DNA hybrid formation 35 5.1 Currently available strategies for protein-DNA hybrid formation 35 5.2 Novel assembly of protein-DNA hybrids based on copper-free click chemistry 37 5.3 Click-chemistry based assembly preserves the native protein structure 40 5.4 Summary 42 6 Non-equilibrium mechanical unfolding and refolding of lambda repressor variants 45 6.1 Non-equilibrium unfolding and refolding of lambda repressor λWT 45 6.2 Non-equilibrium unfolding and refolding of incipient-downhill λYA and downhill λHA variants of lambda repressor 48 6.3 Summary 52 7 Equilibrium unfolding and refolding of lambda repressor variants 53 7.1 Importance of the trap stiffness to resolve low-force nanometer transitions 54 7.2 Signal pair-correlation analysis to achieve millisecond transitions 56 7.3 Force-dependent equilibrium kinetics of λWT 59 7.4 Equilibrium folding of incipient-downhill λYA and downhill λHA variants of lambda repressor 61 7.5 Summary 65 8 Model-free energy landscape reconstruction for λWT, incipient-downhill λYA and downhill λHA variants 69 8.1 Direct observation of the effect of a single mutation on the conformational heterogeneity and protein stability 71 8.2 Artifacts of barrier-height determination during deconvolution 75 8.3 Summary 76 9 Conclusions and Outlook 79 / Protein folding is a process of molecular self-assembly in which a linear chain of amino acids assembles into a defined, functional three-dimensional structure. The process of folding is a thermally driven diffusive search on a free-energy landscape in the conformational space for the minimal-energy structure. During that process, the free energy of the system does not always show a monotonic decrease; instead, sub-optimal compensation of enthalpy and entropy change during each folding step leads to formation of folding free-energy barriers. However, these barriers, and associated high-energy transition states, that contain key information about mechanisms of protein folding, are kinetically inaccessible. To reveal the barrier-formation process and structural characteristics of transition states, proteins are employed that fold via barrierless paths – so-called downhill folders. Due to the low folding barriers, the key folding interactions become accessible, yielding insights about the rate-limiting folding events. Here, I compared the folding dynamics of three different variants of a lambda repressor fragment, containing amino acids 6 to 85: a two-state folder λWT (Y22W) and two downhill-like folding variants, λYA (Y22W/Q33Y/G46,48A) and λHA (Y22W/Q33H/G46,48A). To access the kinetics and structural dynamics, single-molecule optical tweezers with submillisecond and nanometer resolution are used. I found that force perturbation slowed down the microsecond kinetics of downhill folders to a millisecond time-scale, making it accessible to single-molecule studies. Interestingly, under load, the downhill-like variants of lambda repressor appeared as cooperative two-state folders with significantly different folding kinetics and force dependence. The three protein variants displayed a highly compliant behaviour under load. Model-free reconstruction of free-energy landscapes allowed us to directly resolve the fine details of the transformation of the two-state folding path into a downhill-like path. The effect of single mutations on protein stability, transition state formation and conformational heterogeneity of folding and unfolding states was observed. Noteworthy, our results demonstrate, that despite the ultrafast folding time in a range of 2 µs, the studied variants fold and unfold in a cooperative process via residual barriers, suggesting that much faster folding rate constants are required to reach the full-downhill limit.:I Theoretical background 1 1 Introduction 3 2 Protein folding: the downhill scenario 5 2.1 Protein folding as a diffusion on a multidimensional energy landscape 5 2.2 Downhill folding proteins 7 2.2.1 Thermodynamic description of downhill folders 7 2.2.2 Identification criteria for downhill folders 8 2.3 Lambda repressor as a model system for studying downhill folding 9 2.3.1 Wild-type lambda repressor fragment λ{6-85} 10 2.3.2 Acceleration of λ{6-85} folding by specifific point mutations 11 2.3.3 The incipient-downhill λYA and downhill λHA variants 14 2.4 Single-molecule techniques as a promising tool for probing downhill folding dynamics 17 3 Single-molecule protein folding with optical tweezers 19 3.1 Optical tweezers 19 3.1.1 Working principle of optical tweezers 19 3.1.2 The optical tweezers setup 21 3.2 The dumbbell assay 22 3.3 Measurement protocols 23 3.3.1 Constant-velocity experiments 23 3.3.2 Constant-trap-distance experiments (equilibrium experiments) 24 4 Theory and analysis of single-molecule trajectories 27 4.1 Polymer elasticity models 27 4.2 Equilibrium free energies of protein folding in optical tweezers 28 4.3 Signal-pair correlation analysis 29 4.4 Force dependence of transition rate constants 29 4.4.1 Zero-load extrapolation of rates: the Berkemeier-Schlierf model 30 4.4.2 Detailed balance for unfolding and refolding data 31 4.5 Direct measurement of the energy landscape via deconvolution 32 II Results 33 5 Efficient strategy for protein-DNA hybrid formation 35 5.1 Currently available strategies for protein-DNA hybrid formation 35 5.2 Novel assembly of protein-DNA hybrids based on copper-free click chemistry 37 5.3 Click-chemistry based assembly preserves the native protein structure 40 5.4 Summary 42 6 Non-equilibrium mechanical unfolding and refolding of lambda repressor variants 45 6.1 Non-equilibrium unfolding and refolding of lambda repressor λWT 45 6.2 Non-equilibrium unfolding and refolding of incipient-downhill λYA and downhill λHA variants of lambda repressor 48 6.3 Summary 52 7 Equilibrium unfolding and refolding of lambda repressor variants 53 7.1 Importance of the trap stiffness to resolve low-force nanometer transitions 54 7.2 Signal pair-correlation analysis to achieve millisecond transitions 56 7.3 Force-dependent equilibrium kinetics of λWT 59 7.4 Equilibrium folding of incipient-downhill λYA and downhill λHA variants of lambda repressor 61 7.5 Summary 65 8 Model-free energy landscape reconstruction for λWT, incipient-downhill λYA and downhill λHA variants 69 8.1 Direct observation of the effect of a single mutation on the conformational heterogeneity and protein stability 71 8.2 Artifacts of barrier-height determination during deconvolution 75 8.3 Summary 76 9 Conclusions and Outlook 79
505

On-surface synthesis of acenes –: organic nanoelectronic materials explored at a single-molecule level

Krüger, Justus 05 December 2017 (has links)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
506

Characterising (pre-)mrnp organisation at different stages of gene regulation using single-molecule microscopy

Adivarahan, Srivathsan 07 1900 (has links)
Les ARNm sont des molécules centrales pour la régulation des gènes, aidant à convertir l'information génétique stockée dans l'ADN en protéines fonctionnelles. En tant que polymère simple brin, mesurant des centaines à des milliers de nucléotides, les ARNm peuvent former des structures secondaires et tertiaires étendues formant des particules appelés ribonucléoprotéines messagères (RNPm) en s’assemblant avec des protéines. L'organisation 3D des (pré-)RNPm influence de nombreux aspects de leur métabolisme, incluant la régulation de leur maturation, de leur export et de leur traduction dans le cytoplasme. Malgré leur importance, notre compréhension de l'organisation structurelle des (pré-)RNPm in vivo, et des principes qui la régissent est minime. Au cours de ma thèse, j'ai analysé l'organisation des (pré-)mRNP en développant une vision centrée sur l'ARN. Pour cela, j'ai mis en place une approche combinant l'hybridation in situ d'ARN monomoléculaire (smFISH) avec la microscopie à illumination structurée (SIM) et l'ai utilisée pour étudier l'organisation des mRNP dans le noyau et le cytoplasme. Nos résultats suggèrent que l'organisation (pré-)mRNP varie à différents stades de sa vie. Nous montrons que l'empaquetage (pré-)mRNP commence de manière co-transcriptionnelle, avec des introns organisés en conformations compactes. Cette organisation est modifiée au cours de la transcription au fur et à mesure que la polymérase se déplace le long du gène, assemblant finalement un intron avec les extrémités à proximité l’une de l’autre, d'une manière dépendante du spliceosome, suggérant que l'organisation co-transcriptionnelle des introns pourrait être critique pour déterminer son excision. Une fois libérés, les mRNP ont une organisation linéaire compacte dans le nucléoplasme et éventuellement une conformation en tige. L'organisation d’un mRNP dans le cytoplasme est influencée par sa traduction. Alors que la traduction ouvre les mRNP, la séparation des extrémités de l'ARNm, l'inhibition de la traduction et la libération de ribosomes, ou le recrutement dans les granules de stress, donnent aux mRNP une structure très compacte. Fait intéressant, nous trouvons rarement des ARNm avec les extrémités 5' et 3' à proximité, ce qui suggère que la traduction en boucle fermée n'est pas un état universel pour tous les ARNm en cours de traduction. Ensemble, nos résultats fournissent une image essentielle de l'organisation du mRNP dans les cellules et souligne le rôle important de la conformation du RNPm dans la régulation de la traduction et de la maturation d’une RNPm. / mRNAs act as the central molecules in gene regulation, helping convert the genetic information stored in the DNA to functional proteins. As a single-stranded polymer, hundreds to thousands of nucleotides in length, mRNAs can form extensive secondary and tertiary structures and, together with proteins, are packaged into assemblies called messenger ribonucleoproteins (mRNPs). The 3D organisation of (pre-)mRNPs influences many aspects of what happens to them, including regulating their processing, export and translation in the cytoplasm. Despite their significance, our understanding of the structural organisation of (pre-)mRNPs in vivo is minimal, as is our comprehension of the principles that govern it. During my PhD, I have developed an RNA-centric view on (pre-)mRNP organisation. For this, I have established an approach combining single-molecule RNA in situ hybridisation (smFISH) with structured illumination microscopy (SIM) and used it to study mRNP organisation in the nucleus and cytoplasm. Our results suggest that (pre-)mRNP organisation is altered at various stages during its lifetime. We show that (pre-)mRNP packaging starts co-transcriptionally, with introns organised into compact conformations. This organisation is altered during the course of transcription as the polymerase travels along the gene, finally assembling an intron with the ends in proximity in a spliceosome dependent manner, suggesting that co-transcriptional intron organisation could be critical in determining its excision. Once released, mRNPs have a compact linear organisation in the nucleoplasm and possibly a rod-like conformation. mRNP organisation in the cytoplasm is influenced by its translational status. While translation opens up mRNPs, separating the ends of the mRNA, translation inhibition and release of ribosomes, or recruitment to stress granules result in mRNPs having a highly compact structure. Interestingly, we rarely find mRNAs with the 5’ and 3’ ends in proximity, suggesting that closed-looped translation is not a universal state for all translating mRNAs. Together, our results provide a unique and essential view of mRNP organisation in cells and reveal important insight into the role of mRNP conformation in regulating translation and mRNP processing.
507

Freezing single molecule dynamics on interfaces and in polymers

Krause, Stefan, Aramendia, Pedro F., Täuber, Daniela, von Borczyskowski, Christian 12 September 2013 (has links)
Heterogeneous line broadening and spectral diffusion of the fluorescence emission spectra of perylene diimide molecules have been investigated by means of time dependent single molecule spectroscopy. The influence of temperature and environment has been studied and reveals strong correlation to spectral diffusion processes. We followed the freezing of the molecular mobility of quasi free molecules on the surface upon temperature lowering and by embedding into a poly(methyl methacrylate) (PMMA) polymer. Thereby changes of optical transition energies as a result of both intramolecular changes of conformation and external induced dynamics by the surrounding polymer matrix could be observed. Simulations of spectral fluctuations within a two-level system (TLS) model showed good agreement with the experimental findings.
508

Optical Investigation of Single Fluorophores and their Application as Sensitive Probes in Soft Matter Science

Krause, Stefan 29 April 2015 (has links)
Im Mittelpunkt dieser Arbeit steht die Verwendung verschiedener Fluoreszenzfarbstoffe in Form photostabiler Perylenbisimide sowie etallischer Nanopartikel zur Untersuchung von Polymeren und nanoskopischen Flüssigkeitsfilmen. Einzelmoleküluntersuchungen zeigen, dass eine chemische Modifizierung der Farbstoffe durch löslichkeitserhöhende Seitengruppen, Molekülkonformationen mit stark variierenden Emissionswellenlängen je nach Seitengruppen-orientierung zur Folge hat. Zeitabhängige Fluoreszenzmessungen an einzelnen Molekülen ermöglichen eine direkte Beobachtung von Übergängen zwischen diesen molekularen Konformationen deren Dynamik vorwiegend durch die Eigenschaften der umgebenden Polymermatrix bestimmt wird. Die gewonnenen Ergebnisse lassen somit Rückschlüsse auf die nanoskopische Umgebung des Moleküls zu. Es werden diskrete Zustände innerhalb der Molekülumgebung sowie eine erhöhte Konformationsdynamik im Falle von alkylsubstituierten Perylenbisimiden beobachtet. Darüber hinaus werden die nanoskopischen Auswirkungen von makroskopischen, mechanischen Deformationen auf amorphe Polymerfilme mikrorheologisch mit Hilfe von stäbchenförmigen Perylenbisimiden studiert. Die gewonnenen Einzelmoleküldaten ermöglichen die Berechnung der lokalen, mikroskopischen Deformation sowie der Orientierung der Sondenmoleküle, welche gut mit einem Model für stäbchenförmige Objekte in einem uniaxial deformierten Kontinuum übereinstimmt. In weiteren Experimenten gelingt der Nachweis ultradünner Wasserfilme auf SiO2-Oberflächen durch Messung der Diffusion von Silbernanopartikeln. Die verwendeten Nanopartikel weisen hierbei eine monodisperse Größenverteilung im Bereich von einem Nanometer als Resultat ihrer Synthese in Y-Zeolith-Kristallen auf. Die Untersuchungen ergeben eine Filmdickenabhängigkeit des Diffusionsverhaltens sowie einen starken Einfluss durch Oberflächensilanisierung bzw. Hydroxylierung.
509

Tunable High-Field/ High-Frequency ESR and High-Field Magnetization on Single-Molecule Clusters

Golze, Christian 06 December 2007 (has links)
In this work, low dimensional iron group clusters have been studied by application of high magnetic fields. The magnetization has been probed with an MPMS as function of temperature and field. The combination with pulse field measurements up to 52\,T allowed determination of the magnetic exchange coupling parameters, and to probing the effective spin of the ground state. The main focus was on tunable high-field/high-frequency (tHF) ESR in static fields < 17 T and pulse field ESR up to 36 T. This magnetic resonance method has been used for the characterization of the local magnetic properties: The detailed analysis of the field dependence of dedicated spin states allowed to determine the magnetic anisotropy and g-factors. The results were analyzed in the framework of the appropriate effective spin Hamiltonians in terms of magnetization fits and ESR spectrum simulations.
510

MECHANOCHEMICAL INVESTIGATION OF INTERMOLECULAR MECHANICAL FORCE VIA SINGLE-MOLECULE FORCE SPECTROSCOPY

Pandey, Shankar 20 April 2023 (has links)
No description available.

Page generated in 0.0396 seconds