• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 15
  • 12
  • 11
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Performance evaluation of the SPS scraping system in view of the high luminosity LHC

Mereghetti, Alessio January 2015 (has links)
Injection in the LHC is a delicate moment, since the LHC collimation system cannot offer adequate protection during beam transfer. For this reason, a complex chain of injection protection devices has been put in place. Among them, the SPS scrapers are the multi-turn cleaning system installed in the SPS aimed at halo removal immediately before injection in the LHC. The upgrade in luminosity of the LHC foresees beams brighter than those currently available in machine, posing serious problems to the performance of the existing injection protection systems. In particular, the integrity of beam-intercepting devices is challenged by unprecedented beam parameters, leading to interactions potentially destructive. In this context, a new design of scrapers has been proposed, aimed at improved robustness and performance. This thesis compares the two scraping systems, i.e. the existing one and the one proposed for upgrade. Unlike any other collimation system for regular halo cleaning, both are "fast" systems, characterised by the variation of the relative distance between the beam and the absorbing medium during cleaning, which enhances the challenge on energy deposition values. Assets/liabilities of the two systems are highlighted by means of numerical simulations and discussed, with particular emphasis on energy deposition in the absorbing medium, time evolution of the beam current during scraping and losses in the machine. Advantages of the system proposed for upgrade over the existing one are highlighted. The analysis of the existing system takes into account present operational conditions and addresses the sensitivity to settings previously not considered, updating and extending past studies. The work carried out on the upgraded system represents the first extensive characterisation of a multi-turn cleaning system based on a magnetic bump. Results have been obtained with the Fluka-SixTrack coupling, developed during this PhD activity from its initial version to being a state-of-art tracking tool for cleaning studies in circular machines. Relevant contributions to the development involve the handling of time-varying impact conditions. An extensive benchmark against a test of the scraper blades with beam has been carried out, to verify the reliability of results. Effcts induced in the tested blades confirm the high values of energy deposition predicted by the simulation. Moreover, the comparison with the time profile of the beam intensity measured during scraping allowed the reconstruction of the actual settings of the blades during the test. Finally, the good agreement of the quantitative benchmark against readouts of beam loss monitors finally proves the quality of the analyses and the maturity of the coupling.
12

Développement de la microscopie par auto-interférences pour l'imagerie super-résolue tridimensionnelle au sein de tissus biologiques épais. / Self-interferences microscopy for 3D super-resolution microscopy in thick biological samples

Linarès-Loyez, Jeanne 01 October 2019 (has links)
Le travail de cette thèse a été consacré au développement d’un nouvelle technique SELFI (pour self-interferences, auto-interférences en anglais). Cette méthode permet d’obtenir une localisation tridimensionnelle d’émetteurs fluorescents individuels. Nous avons démontré que cela permet l'imagerie super-résolue en 3D et le suivie 3D de molécules uniques en profondeur dans des échantillons biologiques denses et complexes. La technique SELFI se base sur l'utilisation des interférences auto-référencées (également appelées « auto-interférences ») pour remonter à la localisation 3D d’un émetteur en une seule mesure. Ces interférences sont générées via l’utilisation d'un réseau de diffraction placé en sortie du microscope de fluorescence : le signal de fluorescence diffracte sur le réseau et les ordres interfèrent, après une courte propagation, sur le détecteur. Les interférences ainsi formées sont décodées numériquement pour remonter à la localisation 3D d'une molécule fluorescente au sein de l'échantillon. Une molécule unique peut ainsi être localisée avec une précision d'une dizaine de nanomètre, et cela jusqu'à une profondeur d'au moins 50µm au sein d'un échantillon biologique vivant épais (par exemple un tissu biologique).En combinant la méthode SELFI à différentes techniques de super-résolution (PALM, dSTORM et uPAINT), nous montrons que cette méthode de localisation tridimensionnelle permet de retrouver la hiérarchie et l'organisation de protéines dans des objets biologiques. En effectuant du SELFI-PALM, nous avons pu observer différentes protéines des points focaux d’adhésion (talin-C terminale et paxiline) et retrouver les différences de hauteur attendues, et ceux sur des échantillons de cellules vivantes. Ces résultats confirment la résolution accessible avec la technique SELFI (environ 25nm) même pour un faible nombre de photons collectés (environ 500 photons par molécule).Nous mettons en évidence la robustesse de la technique SELFI en reconstruisant des images de super-résolution 3D de structures denses en profondeur dans des échantillons tissulaires complexes. En effectuant du SELFI-dSTORM, nous avons observé le réseau d’actine sur des cellules cultivées en surface de la lamelle dans un premier temps, et à différentes profondeurs (25 et 50 microns) au sein de tissus artificiels dans un second temps.Du suivi 3D de particule unique a aussi été effectué sein de tissus biologiques vivants. Nous avons observé la diffusion libre de quantum dots à différentes profondeurs (jusqu’à 50 microns, limité par l’objectif utilisé) dans des tranches vivantes de cerveau.Nous avons appliqué la technique SELFI à la détection de récepteurs postsynaptiques NMDA. Cela nous a permis d'observer, sur des échantillons de neurones en culture primaire mais aussi au sein de tranches de cerveaux de rats, une différence d'organisation entre les deux sous-unités GluN2A et GluN2B de ce récepteur au glutamate.Enfin, nous avons démontré l'importance de suivre l'évolution de l'environnement des échantillons biologiques vivants lors des acquisitions permettant la détection de molécules individuelles. Grâce à l'utilisation additionnelle et simultanée de l'imagerie de phase quantitative, nous avons pu étudier la dynamique de la membrane cellulaire durant l’activation par un facteur de croissance. L'analyse corrélative entre les images de phase quantitative en lumière blanche et les détections de molécules fluorescentes uniques permet d'obtenir de nouvelles informations pertinentes sur l'échantillon étudié. / The work of this thesis was devoted to the development of a new technique SELFI (for self-interferences). This method unlocks the three-dimensional localization of individual fluorescent emitters. We have demonstrated that this allows 3D super-resolved imaging and 3D tracking of single molecules deep into dense and complex biological samples. The SELFI technique is based on the use of self-referenced interference to go back to the 3D location of a emitter in a single measurement. These interferences are generated using a diffraction grating placed at the exit of the fluorescence microscope: the fluorescence signal diffracts on the grating and, after a short propagation, the orders interfere on the detector. The formed interferences are digitally decoded to extract the 3D location of a fluorescent molecule within the sample. A single molecule can thus be localized with a precision of approximatively ten nanometers up to a depth of at least 50 µm in a thick living biological sample (for example a biological tissue).By combining the SELFI method with different super-resolution techniques (PALM, dSTORM and uPAINT), we show that this three-dimensional localization method grants the access to the hierarchy and organization of proteins in biological objects. By performing SELFI-PALM, we observed different proteins of the adhesion focal points (talin C-terminal and paxilin) and found the expected elevation differences, and those within living cell samples. These results confirm the resolution capability of the SELFI technique (about 25 nm) even for a small number of photons collected (about 500photons per molecule).We highlight the robustness of the SELFI technique by reconstructing 3D super-resolution images of dense structures at depth in complex tissue samples. By performing SELFI-dSTORM, we observed the actin network in cells grown on the surface of the coverslip at first, and at different depths (25 and 50 microns) within artificial tissues in a second time.3D single particle tracking has also been performed in living biological tissues. We observed the free diffusion of quantum dots at different depths (up to 50 microns) in living brain slices.We applied the SELFI technique to the detection of NMDA postsynaptic receptors. We observed, in primary culture of neurons but also within slices of rat brains, a difference in organization between the two subunits GluN2A and GluN2B of this glutamate receptor.Finally, we show the importance of following the evolution of the living biological sample environment during the acquisition of images leading to detections of single molecules. Thanks to the additional and simultaneous use of quantitative phase imaging, we were able to study cell membrane dynamics during the activation by a growth factor. The correlative analysis between white light quantitative phase images and single fluorescent molecule detections provides new relevant information on the sample under study.
13

Determination of the spatiotemporal organization of mitochondrial membrane proteins by 2D and 3D single particle tracking and localization microscopy in living cells

Dellmann, Timo 01 July 2020 (has links)
Mitochondria are the power plant of most non-green eukaryotic cells. In order to understand mitochondrial functions and their regulation, knowledge of the spatiotemporal organization of their proteins is important. Mitochondrial membrane proteins can diffuse within membranes. They are involved in diverse functions e.g. protein import, cell respiration, metabolism, metabolite transport, fusion, fission or formation of the mitochondrial architecture. Furthermore, mitochondria compose of different subcompartments with different tasks. Especially, the inner mitochondrial membrane (IM), where the oxidative phosphorylation (OXPHOS) takes places, has a complex architecture with cristae extending into the matrix. The present work revealed the restricted localization of some mitochondrial proteins to specific membrane sections and linked it to their function or bioenergetic circumstances in the living cell. 
Single particle tracking (SPT) techniques like tracking and localization microscopy (TALM) allow to localize proteins with a precision below 20 nm. Additionally, tracking single proteins provides information about their mobility, dynamic and their spatiotemporal organization. TALM uses proteins, which were genetically tagged either with the HaloTag® (HaloTag) or the fSnapTag® (fSnapTag). These tags can be orthogonally and posttranslationally stained with specific and self-marking dyes. If the dyes are conjugated to the respective substrate of the tag. Single molecule labeling of mitochondrial proteins was performed substoichiometrically using membrane permeable rhodamine dyes, either tetramethylrhodamine (TMR) or silicon rhodamine (SiR). TALM allowed to localize proteins in different mitochondrial subcompartments. The gained trajectories and trajectory maps of mitochondrial proteins revealed their spatiotemporal organization. In the case of IM proteins like F1FO ATP synthase (Complex V - CV) a restricted diffusion in the CM, which is part of the continuous IM, was determined. The unimpeded diffusion of mitochondrial proteins in the outer mitochondrial membrane (OM) was compared with the mobility of IM proteins. The diffusion of mitochondrial IM proteins was restricted by the IM architecture and their diffusion coefficients were lower. Furthermore, significant differences of different mitochondrial IM proteins were compared, showing different localizations in the IM often coupled to their function, accompanied by different spatiotemporal organization and diffusion coefficients. Furthermore, a distinction was made between diffusion of proteins in the inner boundary membrane (IBM) and proteins that preferentially diffuse in the cristae membrane (CM). Evaluating trajectory maps, the different subcompartments in the IM were revealed by trajectories and the trajectory directionality, allowing the identification of mitochondrial proteins, which mark these subcompartments.
The morphology of mitochondria / mitochondrial networks and their bioenergetic parameters are linked to the metabolic states of the cell. In this work, the connection of the spatiotemporal protein organization of CV and the IM architecture was uncovered on the micro- and nanoscopic level and linked to the metabolic state of the cell. It was determined that the spatiotemporal organization of the CV was altered, when CV was inhibited. In addition, the bioenergetic influence of cells on the spatiotemporal behavior of CV and the reorganization of the IM architecture was investigated by TALM and compared with results of electron microscopy images. It was shown that starvation of cells led to a loss of cristae and thus to an increased mobility and spatiotemporal reorganization of CV. Taken together, the results presented in this work showed that a correctly functioning and active CV helps to maintain the IM architecture and both, the spatiotemporal organization of CV and the IM architecture were coupled to the metabolic state.. 
In order to investigate putative protein-protein interactions by colocalization and co-locomotion studies on single molecule level, dual color SPT is needed. Therefore, posttranslational and substoichimetric labeling as performed in TALM was tested for its potential of protein-protein interaction studies of mitochondrial membrane proteins. Here, a genetically double tagged translocase of the outer membrane subunit-20 (Tom20) (Tom20:HaloTag:fSnapTag) acted as a positive control. It turned out that substoichimetric, posttranslational labeling of mitochondrial proteins was not suitable for protein-protein interaction studies on mitochondrial proteins, because it was restricted by the low labeling degrees needed for TALM. However, dual-color TALM still allowed to study effects of proteins influencing the IM architecture and to study their influence on the spatiotemporal organization of CV. The co-transfection of Mic10, as the central protein of the mitochondrial inner membrane organizing system / mitochondrial contact site complex / mitochondrial organizing structure (MINOS / MICOS / MitOS (MINOS/MICOS)), altered the regular and aligned organization of the cristae. This was measured by a changed spatiotemporal organization of the CV, such as the loss of the perpendicular oriented of CV subunit-γ (CV-SUγ) cristae trajectories. In contrast to this, co-transfection of CV subunit-e (CV-SUe), important for dimerization of CV, increased the number of cristae trajectories. 
Mitochondria are three-dimensional (3D) cell organelles. Consequently, subcompartments like the IBM and CM are a 3D space in which CV is localized and diffuses. Thus, the diffusion of mitochondrial proteins is underestimated by two-dimensional SPT e.g. lateral confined diffusion can result from mitochondrial proteins diffusing along the z-axis of the microscope. In order to reveal the 3D spatiotemporal organization of CV, the potential of TALM to be extended to a 3D-SPT technique was investigated. Therto a cylindrical lens was installed in the emission path of a total internal reflection fluorescence (TIRF) microscope. This leads to an astigmatically distorted point spread function (PSF) of the fluorescent single molecule signals. This distortion allowed the reconstruction of single molecule localizations of CV to a superresolved image of the IM, in living cells. In addition, 3D-TALM enabled to display the 3D architecture of the IM by 3D trajectories of CV. 3D-TALM was able to detect whether CV diffuses in the IBM or in the CM, and extended the information about its mobility in the CM that it takes place in a disc-like manner. In this way it could be shown that CV is mobile within the cristae in all directions. Finally, 3D-TALM revealed an altered IM architecture caused by the metabolic state of the cell. As performed in two-dimensional TALM, the cells were kept under starving conditions. Here the now tubular IM architecture was revealed by 3D-TALM. The reversed metabolic state under improved respiratory conditions unexpectedly led to a more diverse IM architecture. These ultrastructural changes were also revealed by electron microscopy. Consequently, 3D-TALM enabled the study of IM architecture by tracking CV under different metabolic conditions, allowing an ultrastructural analysis of mitochondria in living cells. In addition, 3D TALM provided the spatiotemporal organization of CV under different metabolic conditions, so that the diffusion coefficients of CV could be related to changes in IM architecture caused by the metabolic condition.
14

Dual-Color Single-Particle Tracking / A Novel Tool to Study Hrd1 Complex Architecture

Abel, Tim Felix Michael Johannes 13 August 2024 (has links)
Endgültig fehlgefaltete oder anderweitig beschädigte Proteine des Endoplasmatischen Retikulums (ER) werden durch das Proteasom in einem Prozess abgebaut, der als Endoplasmatischer Retikulum Assoziierter Abbau (ERAD) bezeichnet wird. Der Hrd1-Komplex ist ein aus mehreren Komponenten bestehender Transmembran-Proteinkomplex, der die Ubiquitinierung und den Export von Proteinen aus dem ER vermittelt, welche dann im Zytosol abgebaut werden. Trotz erheblicher Anstrengungen in den letzten zwei Jahrzehnten führte die biochemische Charakterisierung seiner Architektur und seines Mechanismus zu inkonsistenten und sogar widersprüchlichen Ergebnissen, sodass kein Konsens darüber besteht, wie Hrd1 den Proteintransport realisiert. In diesem Projekt habe ich Fluoreszenz-Mehrfarben-Einzelmolekül-Mikroskopie verwendet, um eine neue Perspektive auf die Architektur, Bildung und Dynamik des Hrd1-Komplexes zu eröffnen. Im Projektverlauf habe ich zellbiologische, experimentelle und analytische Werkzeuge entwickelt, um die Hrd1-Oligomerisierung in vivo robust zu quantifizieren und zu charakterisieren. Durch die Kombination von Mehrfarben-Einzelmolekül-Mikroskopie mit chemischer Inhibierung, der Herunterregulierung anderer Komplexkomponenten und einem neuartigen, auf Bindungswettbewerb basierenden Assay konnte ich nachweisen, dass Hrd1 ein stabiles Homo-Tetramer bildet, das über seine zytosolische Domäne Hrd1480-529 geformt wird. Durch Strukturmodellierung über AlphaFold konnte ich nachweisen, dass sich diese Domäne unabhängig von anderen Komplexkomponenten oder der Aktivität von Hrd1 zu einer kanonischen „coiled-coil“ Domäne zusammensetzt. Während diese Arbeit neue spezifische biologische Einblicke in die Hrd1-Komplexbildung liefert, dient sie auch als allgemeine Blaupause dafür, wie Einzelpartikel-Tracking verwendet werden kann, um Fragen zu beantworten, die mit klassischer Biochemie in der Regel nur begrenzt untersucht werden können. / Terminally misfolded or otherwise damaged proteins of the Endoplasmic Reticulum (ER) are degraded by the proteasome in a process termed Endoplasmic Reticulum Associated Degradation (ERAD). The Hrd1 complex is a multicomponent transmembrane protein complex that mediates ubiquitination and export of proteins from the ER to be degraded in the cytosol. Despite substantial effort in the past two decades, the biochemical characterization of its architecture and mechanism produced inconsistent and even contradictory results, yielding no consensus on how it mediates protein transport. Its elusive nature is representative of the limitations of classical biochemical approaches, whose often harsh experimental conditions directly interfere with the objects they study. In this project I used fluorescence multi-color single molecule microscopy to offer a new perspective on the architecture, formation and dynamics of the Hrd1 complex. In this process I developed cell biological, experimental and analytical tools to robustly quantify and characterize Hrd1 oligomerization in vivo. Combining live-cell dual-color single-particle tracking with chemical inhibition, downregulation of complex components and a novel, binding-competition based tracking assay, I demonstrated that Hrd1 forms a stable homo-tetramer via its cytosolic domain Hrd1480-529. By structural modeling via AlphaFold, results of which were validated with both single-particle tracking and recombinant protein expression, I showed that this domain assembles into a canonical coiled-coil domain independently of other complex components or Hrd1's activity. While yielding specific novel biological insight into Hrd1 complex formation, it also serves as a general blueprint on how dual-color single particle tracking can be used to address questions that bring classical biochemistry to its limits.
15

Étude du trafic vésiculaire des récepteurs glutamatergiques de type AMPA : caractérisation d’une nouvelle protéine auxiliaire / Study of the vesicular trafficking of AMPA-type glutamate receptor : saraterization of a novel AMPA receptor auxiliairy protein

Renancio, Cédric 18 December 2013 (has links)
Les récepteurs du glutamate de type AMPA (rAMPA) sont les acteurs principaux de la transmission synaptique excitatrice rapide. Leur abondance au niveau de la densité postsynaptique est essentielle pour l'établissement et le maintien de la fonction synaptique, et est le résultat d'un trafic hautement dynamique. De nombreuses études ont permis de caractériser les mécanismes de diffusion membranaire impliqués dans l’adressage des rAMPA jusqu’à la synapse. Le rôle majeur des protéines auxiliaires des rAMPA dans la modulation de cette étape de trafic a été démontré. Par ailleurs, il est suggéré que la localisation synaptique des rAMPA est aussi régulée lors des phases plus précoces du trafic intracellulaire, c’est-à-dire de l'appareil de Golgi vers la membrane plasmique via les vésicules post-Golgiennes. Cependant le trafic vésiculaire post-Golgien des rAMPA n'a jamais été visualisé et reste donc encore très mal compris. En collaboration avec l'équipe de Guus Smit (Amsterdam), j’ai participé à la caractérisation d’une nouvelle protéine auxiliaire des rAMPA, appelée Shisa6. Dans le cadre de ce projet, j’ai pu étudier le rôle de cette protéine sur la diffusion membranaire des rAMPA en utilisant une technique de suivi de particule unique (Quantum dot) développée au laboratoire. Mon projet de thèse principal a consisté à étudier le trafic vésiculaire post-Golgien des rAMPA par le développement d’une nouvelle méthode d’étude. En effet, l'échec dans la visualisation dynamique du trafic vésiculaire des récepteurs pourrait être expliqué par un faible rapport signal/bruit, conséquence d'une faible concentration vésiculaire en rAMPA combinée à un bruit de fond important dû aux marquages provenant du réticulum endoplasmique (RE) et de la membrane plasmique. Dans le but de surpasser cette difficulté, nous avons mis au point un outil ingénieux (système ARIAD) afin de bloquer les rAMPA dans le RE et contrôler, par l'ajout d'un ligand, leur sécrétion du RE jusqu'à la membrane plasmique. Grâce à cet outil, nous avons non seulement augmenté considérablement la concentration des rAMPA dans les vésicules post-Golgiennes, mais aussi éliminé le bruit de fond membranaire. Par la technique de FRAP nous avons pu éliminer le bruit de fond provenant du RE. Une telle approche, combinée à des techniques d'imagerie sur neurones vivants, nous a permis de visualiser pour la première fois le trafic vésiculaire post-Golgien des rAMPA et de l’étudier. / AMPA-type glutamate receptors (AMPAR) are the main actors of the fast excitatory synaptic transmission. Their abundance at the postsynaptic density is essential for the establishment and maintenance of synaptic function, and is the result of a highly dynamic trafficking. Many studies have characterized the membrane diffusion mechanisms involved in the AMPAR synaptic localization, and revealed the critical role of the AMPAR auxiliary proteins in the modulation of this trafficking. Furthermore, it is suggested that AMPAR synaptic localization is also regulated during the early steps of the intracellular trafficking, from the Golgi apparatus to the plasma membrane via the post-Golgi vesicles. However, the post-Golgi vesicular trafficking of AMPAR has never been visualized and therefore remains poorly understood. In collaboration with the Guus Smit team (Amsterdam), I participated in the caracterization of a novel AMPAR auxiliary protein called Shisa6. As part of this project, I studied the role of this protein on the AMPAR membrane diffusion, using a method of single particle tracking (Quantum dot) developed in the laboratory. My main thesis project was to study the post-Golgi vesicular trafficking of AMPAR through the development of a new experimental protocol. Indeed, the failure in the dynamic visualization of the receptor vesicular trafficking could be explained by a low signal/noise ratio resulting of a poor AMPAR vesicular concentration, combined with a high background noise due to receptors localized both in the endoplasmic reticulum (ER) and at the plasma membrane. In order to overcome this difficulty, we have used an ingenious tool (ARIAD system) so as to block AMPAR into the ER and, by adding a ligand, control their trafficking from the ER to the plasma membrane. Thanks to this tool we have not only significantly increased the AMPAR concentration in the post-Golgi vesicles, but also eliminated the plasma membrane background noise. The FRAP imaging technique was used in order to remove the ER background noise. Such methodological approach combined with imaging techniques in living neurons, allowed us to clearly visualize for the first time the post-Golgi vesicular trafficking of AMPAR, and to study the mechanisms involved in this trafficking.
16

Quantitative single molecule imaging deep in biological samples using adaptive optics / Imagerie quantitative des molécules uniques en profondeur dans les échantillons biologique à l'aide d'optiques adaptatives

Butler, Corey 04 July 2017 (has links)
La microscopie optique est un outil indispensable pour la recherche de la neurobiologie et médecine qui permet l’étude des cellules dans leur environnement natif. Les processus sous-cellulaires restent néanmoins cachés derrière les limites de la résolution optique, ce qui rend la résolution des structures plus petites que ~300nm impossible. Récemment, les techniques de la localisation des molécules individuelles (SML) ont permis le suivi des protéines de l’échelle nanométrique grâce à l’ajustement des molécules uniques à la réponse impulsionnelle du système optique. Ce processus dépend de la quantité de lumière recueilli et rend ces techniques très sensibles aux imperfections de la voie d’imagerie, nommé des aberrations, qui limitent l’application de SML aux cultures cellulaires sur les lamelles de verre. Un système commercial d’optiques adaptatives est implémenté pour compenser les aberrations du microscope, et un flux de travail est défini pour corriger les aberrations dépendant de la profondeur qui rend la 3D SML possible dans les milieux biologiques complexes. Une nouvelle méthode de SML est présentée qui utilise deux objectifs pour détecter le spectre d’émission des molécules individuelles pour des applications du suivi des particules uniques dans 5 dimensions (x,y,z,t,λ) sans compromis ni de la résolution spatiotemporelle ni du champ de vue. Pour faciliter les analyses de manière quantitative des Go de données générés, le développement des outils biochimiques, numériques et optiques est présenté. Ensemble, ces approches ont le but d’amener l’imagerie quantitative des molécules uniques dans les échantillons biologiques complexes / Optical microscopy is an indispensable tool for research in neurobiology and medicine, enabling studies of cells in their native environment. However, subcellular processes remain hidden behind the resolution limits of diffraction-limited optics which makes structures smaller than ~300nm impossible to resolve. Recently, single molecule localization (SML) and tracking has revolutionized the field, giving nanometer-scale insight into protein organization and dynamics by fitting individual fluorescent molecules to the known point spread function of the optical imaging system. This fitting process depends critically on the amount of collected light and renders SML techniques extremely sensitive to imperfections in the imaging path, called aberrations, that have limited SML to cell cultures on glass coverslips. A commercially available adaptive optics system is implemented to compensate for aberrations inherent to the microscope, and a workflow is defined for depth-dependent aberration correction that enables 3D SML in complex biological environments. A new SML technique is presented that employs a dual-objective approach to detect the emission spectrum of single molecules, enabling 5-dimensional single particle imaging and tracking (x,y,z,t,λ) without compromising spatiotemporal resolution or field of view. These acquisitions generate ~GBs of data, containing a wealth of information about the localization and environment of individual proteins. To facilitate quantitative acquisition and data analysis, the development of biochemical, software and hardware tools are presented. Together, these approaches aim to enable quantitative SML in complex biological samples.
17

Etude de la régulation glutamate dépendante de la mobilité des récepteurs AMPA et de son rôle physiologique / Study of the glutamate dependant regulation of AMPA receptor mobility and of its physiological role

Constals, Audrey 23 October 2013 (has links)
Les récepteurs AMPA (rAMPA) sont les récepteurs ionotropiques du glutamate responsables de la majeure partie des courants excitateurs rapides dans la transmission synaptique rapide. Lors de la libération de glutamate, le rAMPA passe par 3 états conformationnels majoritaires : pore fermé/agoniste non lié, pore ouvert/agoniste lié et pore fermé/agoniste lié. Le contrôle du nombre et de l’organisation dans la synapse des rAMPA, via une combinaison de diffusion latérale et d’endo/exocytose, est essentiel à la régulation de l’intensité de la transmission synaptique. Les interactions existant entre les protéines de la densité post-synaptique et les protéines partenaires des récepteurs régulent la diffusion des récepteurs, contrôlant leur nombre et leur organisation à la post-synapse. Mon travail de thèse a consisté à étudier l’impact de l’activation des rAMPA sur leur mobilité et leur organisation à la post-synapse. En effet, la fixation de glutamate sur les récepteurs ainsi que leur désensibilisation entraînent des modifications structurales majeures affectant leurs interactions avec les protéines d’échafaudage et les protéines accessoires. L’impact de telles modifications sur les propriétés de diffusion et sur l’organisation sub-synaptique de ces rAMPA était jusqu’à présent inconnu. Mes travaux démontrent une mobilisation des rAMPA synaptiques consécutivement à leur activation par le glutamate. A l’échelle moléculaire, je propose que le passage de l’état activé à l’état désensibilisé des rAMPA entraîne un changement d’affinité de ces derniers pour une de leur protéine partenaire : la Stargazin. Cette régulation glutamate dépendante de la diffusion des rAMPA participe au maintien de la fidélité de la transmission synaptique rapide. / AMPA receptors (AMPAR) are ionotropic glutamate receptors which are responsible for the vast majority of fast excitatory synaptic currents in fast transmission. Upon release of glutamate, AMPAR undergo three main conformational states: pore closed/agonist unbound, pore open/agonist bound and pore closed/agonist bound. Controlling the number of AMPAR and their organization in the synapse, through a combination of lateral diffusion and endo/exocytosis, is essential to regulate the intensity of synaptic transmission. The interactions between proteins of the post-synaptic density and accessory receptor proteins regulate the distribution of receptors, controlling their number and organization in the post-synapse. During my PhD, I studied the impact of AMPAR activation on their mobility and organization in the post-synapse. Indeed, the binding of glutamate to AMPAR and their following desensitization lead to major structural changes on the receptor which impacts on their interactions with scaffolding proteins and accessory proteins. The impact of such modifications on the lateral diffusion and sub-synaptic organization of AMPAR was not known yet. My findings show a mobilization of synaptic AMPAR following their activation by glutamate. At the molecular level, I suggest that the transition from the activated state to the desensitized state of AMPAR leads to a change in affinity of the receptor for their partner protein: Stargazin. This glutamate dependent regulation of AMPAR diffusion participates in maintaining the fidelity of fast synaptic transmission.
18

Quantitative analysis of single particle tracking experiments: applying ecological methods in cellular biology

Rajani, Vishaal Unknown Date
No description available.
19

Quantitative analysis of single particle tracking experiments: applying ecological methods in cellular biology

Rajani, Vishaal 11 1900 (has links)
Single-particle tracking (SPT) is a method used to study the diffusion of various molecules within the cell. SPT involves tagging proteins with optical labels and observing their individual two-dimensional trajectories with a microscope. The analysis of this data provides important information about protein movement and mechanism, and is used to create multistate biological models. One of the challenges in SPT analysis is the variety of complex environments that contribute to heterogeneity within movement paths. In this thesis, we explore the limitations of current methods used to analyze molecular movement, and adapt analytical methods used in animal movement analysis, such as correlated random walks and first-passage time variance, to SPT data of leukocyte function-associated antigen-1 (LFA-1) integral membrane proteins. We discuss the consequences of these methods in understanding different types of heterogeneity in protein movement behaviour, and provide support to results from current experimental work. / Applied Mathematics
20

Mécanismes moléculaires d’activation des intégrines par la kindline-2 lors de l’adhésion cellulaire / Molecular mechanisms of integrin activation by kindlin-2 during cell adhesion

Orré, Thomas 29 November 2017 (has links)
Les adhérences focales (AF), structures adhésives reliant la cellule à la matrice extra-cellulaire (MEC), constituent de véritables plateformes de signalisation biochimique et mécanique qui contrôlent l'adhérence, la migration, la différenciation et la survie cellulaire. Les récepteurs transmembranaires intégrines sont au coeur des AF, où elles connectent la MEC au cytosquelette d'actine. Au début des années 2000, la protéine intracellulaire taline, qui se lie aux parties cytoplasmiques bêta des intégrines, était considérée comme le principal activateur des intégrines. Néanmoins, il a depuis été montré que la kindline, autre protéine intracellulaire se liant aux parties bêta cytoplasmiques, jouait également un rôle essentiel dans l'activation des intégrines. Ainsi,plusieurs études ont mis en évidence que la kindline et la taline étaient complémentaires et avaient une action synergique durant l'activation des intégrines. Les bases moléculaires de ces phénomènes restent à déterminer. De plus, la plupart des données sur lerôle de la kindline dans l'adhérence et l'activation des intégrines provient d'expériences menées sur des cellules en suspension et/ou avec l'intégrine plaquettaire αIIbβ3. Ainsi, la régulation de ces processus par la kindline dans les cellules adhérentes est encore peu comprise. Dans cette étude, nous combinons la microscopie PALM et le suivi de protéines individuelles pour révéler le rôle et le comportement de la kindline à l'intérieur et à l'extérieur des AF au cours des événements moléculaires clés se déroulant au niveau de la membrane plasmique, et qui mènent à l'activation des intégrines. Nous avons observé que les intégrines bêta1 etbêta3 portant une mutation ponctuelle inhibant l'interaction avec la kindline montrent un défaut d'immobilisation dans les AF. Nous avons également observé que la kindline-2, qui est enrichie dans les AF, diffusait librement au niveau de la membrane plasmique,à l'intérieur et à l'extérieur des AF. Ceci constitue une distinction majeure par rapport à la taline, qui, au niveau de la membrane plasmique, est essentiellement observée dans les AF où elle est immobile, montrant qu'elle est recrutée dans les AF directement depuis le cytosol sans diffusion latérale membranaire (Rossier et al. 2012). Afin d'identifier les bases moléculaires du recrutement et de la diffusion membranaire de la kindline, nous avons utilisé différents variants mutés de kindline précédemment décrits. Le mutant kindline-2-QW614/615AA (liaison aux intégrines inhibée) montre une diffusion membranaire accrue, ce qui suggère que la kindline peut diffuser au niveau de la membrane plasmique sans être associée aux intégrines. Par ailleurs, la baisse d'immobilisation au niveau des AF observée avec ce mutant montre qu'une partie de l'immobilisation de la kindline est due aux intégrines, suggérant l'existence d'un complexe intégrine-kindline immobile dans les AF. La délétion du domaine PleckstrinHomology (PH) de la kindline diminue considérablement son recrutement et sa diffusion membranaire. Nous avons évalué le rôle fonctionnel du recrutement et de la diffusion membranaire de la kindline en réexprimant ces mutants dans des cellules déplétéesen kindline-1 et -2 (cellules KO kindline-1 -/-, kindline-2 -/-). Ces expériences montrent que le recrutement et la diffusion membranaire de la kindline sont cruciaux pour l'activation des intégrines durant l'étalement cellulaire et favorisent la formation d’adhérences. Cela suggère que la kindline utilise un chemin différent de celui de la taline pour atteindre et activer les intégrines,ce qui pourrait expliquer au niveau moléculaire comment la kindline complémente la taline durant l'activation des intégrines. / Focal adhesions (FAs) are adhesive structures linking the cell to the extracellular matrix (ECM) and constitute molecular platforms for biochemical and mechanical signals controlling cell adhesion, migration, differentiation and survival. Integrin transmembrane receptors are core components of FAs, connecting the ECM to the actin cytoskeleton. During the early 2000s, the intracellular protein talin, which directly binds to the cytoplasmic tail of β-integrins, was considered as the main integrin activator. Nevertheless, it has been shown that kindlin, another intracellular protein that bind to β-integrin, is also a critical integrin activator. In fact, several studies have shown that kindlin and talin play complementary and synergistic roles during integrin activation. The molecular basis of these phenomena remains to determine. Moreover, most studies focusing on the role of kindlin during integrin activation and cell adhesion have been performed with suspended cells and/or with the platelet integrin αIIbβ3. Here we combined PALM microscopy with single protein tracking to decipher the role and behavior of kindlin during key molecular events occurring outside and inside FAs at the plasma membrane and leading to integrin activation, as we have done previously for talin (Rossier et al., 2012). We found that beta1 and beta3-integrins with a point mutation inhibiting binding to kindlin show reduced immobilization inside FAs. We also found that kindlin-2, which is enriched inside FAs, displayed free diffusion at the plasma membrane outside and inside FAs. This constitutes a major difference with talin, which, at the plasma membrane level, is observed almost exclusively in FAs, where it is immobile, which shows that talin is recruited into FAs directly from the cytosol without lateral diffusion along the plasma membrane (Rossier et al. 2012). To determine the molecular basis of kindlin membrane recruitment and diffusion, we used a kindlin variant known to decrease binding to integrins (kindlin-2- QW614/615AA). This mutant displayed increased membrane diffusion, suggesting that kindlin-2 can freely diffuse at the plasma membrane without interacting with integrins. Moreover, the kindlin-2-QW mutant showed decreased immobilization inside FA, showing that part of kindlin immobilization depends on interaction with integrins. This suggests that kindlin can form an immobile complex with integrins inside focal adhesions. Deletion of the kindlin pleckstrin homology (PH) domain strongly reduced the membrane recruitment and diffusion of kindlin. We assessed the functional role of kindlin membrane recruitment and diffusion by re-expressing different kindlin-2 mutants in kindlin-1/kindlin-2 double KO cells. Those experiments demonstrated that kindlin-2 membrane recruitment and diffusion are crucial for integrin activation during cell spreading and favor adhesion formation. This suggests that kindlin uses a different route from talin to reach integrins and trigger their activation, providing a possible molecular basis for their complementarity during integrin activation.

Page generated in 0.1034 seconds