• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudio de redes neuronales modulares para el modelado de sistemas dinámicos no lineales

Morcego Seix, Bernardo 17 July 2000 (has links)
de la memòriaEn aquest estudi es consideren aspectes teòrics i pràctics del modelatge de sistemes no lineals mitjançant xarxes neuronals modulars.A la vessant teòrica s'ha proposat un model que aprofita les avantatges de les xarxes neuronals i minimitza els seus inconvenients, permetent interpretar físicament els resultats i afegir coneixement previ per accelerar el procés de modelatge. Es tracta de les xarxes de mòduls neuronals.Un mòdul neuronal és una xarxa neuronal que aprofita l'ús de restriccions estructurals per forçar un tipus de comportament al model. Aquest concepte s'ha creat a propòsit en aquest estudi, recolzat per l'argument de que les restriccions topològiques constitueixen un mètode més versàtil i efectiu que el propi mecanisme d'aprenentatge per facilitar comportaments desitjats en una xarxa neuronal.D'aquesta forma, una vegada aplicat el procés de identificació, el model resultant és una xarxa neuronal composada per mòduls, cadascun dels quals representa un bloc funcional del sistema amb un significat fàcilment interpretable.Donat que els mòduls neuronals són paradigmes nous dins de l'àmbit de les xarxes neuronals, s'ha proposat una sèrie de pautes pel seu disseny i es descriu un conjunt de mòduls neuronals format per nou no linealitats dures i els sistemes lineals sense restricció d'ordre.També s'ha realitzat un estudi formal en el que s'han caracteritzat els sistemes que es poden aproximar mitjançant xarxes de mòduls neuronals, el conjunt ?NM, i s'ha establert una cota de l'error d'aquesta aproximació. Aquest resultat és fonamental perquè assenta una base sòlida per plantejar el modelatge de sistemes no lineals amb xarxes de mòduls neuronals. En ell es demostra que, com més precisa sigui l'aproximació de les diferents parts del sistema, més precisa serà l'aproximació del sistema global.Des del punt de vista pràctic, es consideren els aspectes de creació i optimització del model proposat.Primerament, i donat que es tracta d'una xarxa neuronal, es repassen els mecanismes existents a la literatura per adaptar els paràmetres del model al problema. En aquest sentit, s'ha dissenyat un algoritme d'aprenentatge específic per les xarxes neuronals modulars, el modular backpropagation, el cost computacional del qual comparat amb altres algoritmes clàssics, és menor en estructures modulars.Es descriu també una eina de modelització dissenyada a propòsit com mètode per crear i optimitzar, de forma automàtica, xarxes de mòduls neuronals. Aquesta eina combina la programació evolutiva, algoritmes clàssics d'aprenentatge neuronal i el gestor d'aprenentatge, modular backpropagation, amb la finalitat de resoldre problemes de modelització de sistemes no lineals mitjançant xarxes de mòduls neuronals.Finalment, es proposa un esquema del procés de modelització de sistemes no lineals utilitzant les eines desenvolupades en aquest estudi. S'ha creat una aplicació que permet sistematitzar aquest procés i s'ha obtingut els models de tres sistemes no lineals per comprovar la seva utilitat. Els problemes que s'han sotmès al procés de modelització amb xarxes neuronals són: un motor de corrent continu, un sistema no lineal amb histèresi i un element piezoelèctric. En els tres casos s'ha arribat a una solució satisfactòria que permet confirmar la utilitat de les eines desenvolupades en aquest estudi. / This work is concerned with theoretical and applied aspects of nonlinear system modelling with modular neural networks.From the theoretical viewpoint, a new model is proposed. This model attempts to combine the capabilities of neural networks for nonlinear function approximation with the structural organisation of classical block oriented techniques for system modelling and identification. This model is the Neural Module (NM).A neural module is a neural network that behaves inherently like a function or family of functions. The specified behaviour is forced with the use of topological restrictions in the network. The neural module is a new concept developed upon the argument that topological restrictions is a much more versatile and effective way of facilitating a specific behaviour in a neural network than the learning mechanism itself.Once the learning process finishes, the resulting model is a neural network composed by modules. Each module is supposed to model a functional element of the system, with an easy to understand meaning.As long as the neural module is a new paradigm in the neural network domain, rules and guidelines are given for their design. A set of neural modules with nine hard nonlinearities and the linear systems is also described.The set of dynamic systems that can be approximated using neural modules, called SNM, is formally described. The approximation error between en element of SNM and its neural model is calculated and found bounded. This is a basic result that sets up a firm base from which neural module modelling could be considered as a useful type of model.From the practical viewpoint, creation and optimisation aspects of the proposed model are considered.First of all, some of the classical rules of parameter adaptation in neural networks are reviewed. In order to allow modular networks to learn more efficiently, a specific learning algorithm is introduced. This is the modular backpropagation (MBP) algorithm. The computational cost of MPB is less than the cost of classical algorithms when they are applied to modular structures.A modelling tool, specially designed for the automatic creation and optimisation of modular neural networks, is also described. This tool combines Evolutionary Programming, classical neural learning algorithms and the learning manager, MBP. This tool is aimed at solving nonlinear modelling problems with the use of modular neural networks.Finally, an outline of the modelling process with the tools developed in this work is given. This process is applied to the modelling and identification of three nonlinear systems, which are: a dc motor, a nonlinear system with hysteresis, and a piezoelectric element. The three cases are modelled satisfactorily and the usefulness of the framework presented is confirmed.
12

Analytic and numerical tools for the study of quasi-periodic motions in hamiltonian systems.

Luque Jimenez, Alejandro 12 January 2010 (has links)
És un fet ben conegut que les solucions quasi-periòdiques juguen un paper rellevant a l'hora d'entendre la dinàmica de problemes amb formulació hamiltoniana, els quals apareixen en una gran quantitat d'aplicacions en astrodinàmica, dinàmica molecular, física de d'acceleradors/plasmes o mecànica celest.De forma imprecisa i imcomplerta, hom pot dir que la teoria KAM recull una serie de tècniques i metodologies per estudiar solucions quasi-periòdiques (és a dir, funcions dependents d'un conjunt de freqüències) d'equacions diferencials típicament amb formulació hamiltoniana. Tot i que la teoria KAM és ben coneguda (veure [1]), els mètodes clàssics presenten inconvenients i dificultats a l'hora d'aplicar els resultats abstractes a exemples o models concrets. Nogensmenys, a [2] es va desenvolupar un nou mètode, sense usar transformacions ni coordenades acció-angle, amb el que es poden superar molts dels inconvenients de les tècniques clàssiques. Aquest mètode fou introduit per a tors de dimensió màxima i, en la actualitat, hom considera de gran interés la seva extensió a altres contextos, com ara l'estudi de tors "sense torsió' a [4] o l'estudi de tors de dimensió inferior normalment hiperbòlics a [3]. Un dels objectius d'aquesta tesi doctoral ha estat adaptar aquests mètodes per demostrar l'existència de tors de dimensió inferior normalment el·liptics i reductibles. Les dificultats tècniques que calen superar deriven de les ressonàncies que tenen lloc entre les freqüències internes del tor i les frequències d'oscil·lació de les "direccions normals', que cal caracteritzar (mitjançant reductibilitat) per tal d'obtenir les propietats geomètriques que es fan servir en la demostració.Per altra banda, a l'hora d'estudiar un tor invariant amb dinàmica quasi-periòdica, hom pot obtenir molta informació coneixent el seu vector de freqüències. És per això que el càlcul numèric d'aquests objectes ha esdevingut un tema de molt interés durant els darrers anys i ha portat al desenvolupament de diversos mètodes. Recentment s'ha desenvolupat a [5] un mètode molt eficient per calcular nombres de rotació per aplicacions del cercle. Hom pot identificar aquest problema amb el càlcul de la freqüència d'un tor unidimensional escrit en unes bones coordenades. Bona part de la recerca realitzada en la meva tesi doctoral continua la linea de treball encetada a [5]. Concretament, donada una família paramètrica de difeomorfismes del cercle, aquesta metodología s'ha adaptat en per a calcular derivades del nombre de rotació respecte de paràmetres. Mitjançant aquesta informació hom pot implementar esquemes tipus Newton per calcular corbes invariants. Com s'ha remarcat abans, hom pot aplicar aquestes tècniques a l'estudi de corbes invariants sempre que es pugui construir una aplicació del cercle amb la mateixa dinàmica. A tal efecte, hem desenvolupat un mètode sòlidament justificat que permet evitar la dificultat pràctica de buscar unes bones coordenades pel tor, extenent així els mètodes a contextes més generals com ara aplicacions "sense torsió" o senyals quasi-periodiques.[1] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its applications, volume 69 of Proc. Sympos. Pure Math., pages 175-292. Amer. Math. Soc., 2001.[2] R. de la Llave, A. Gonzàlez, À. Jorba, and J. Villanueva. KAM theory without action-angle variables. Nonlinearity, 18(2):855-895, 2005.[3] E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered tori by a parametrization method. Part I: Maps and flows in finite dimensions. J. Differential Equations, 246:3136-3213, 2009.[4] R. de la Llave , A. González and A Haro. Non-twist KAM theory. In preparation.[5] T.M. Seara and J. Villanueva. On the numerical computation of Diophantine rotation numbers of analytic circle maps. Phys. D, 217(2):107-120, 2006. / It is well-known that quasi-periodic solutions play a relevant role in order to understand the dynamics of problems with Hamiltonian formulation, which appear in a wide set of applications in Astrodynamics, Molecular Dynamics, Beam/Plasma Physics or Celestial Mechanics.Roughly speaking, we can say that KAM theory gathers a collection of techniques and methodologies to study quasi-periodic solutions (that is, functions depending on a set of frequencies) of differential equations typically with Hamiltonian formulation. Although KAM theory is well-known (see [1]), classical methods present shorcomings and difficulties in order to apply the abstract results to concret examples or models. Nevertheless, in [2] a new method was developed, without using action-angle variables, which allows us avoid most of the shortcomings of classical methods. This method was introduced for tori of maximal dimension and there is a current interest in extending it to other contexts, such us the study of non-twist tori in [4] or normally hyperbolic tori in [3]. One of the goals of this thesis has been to adapt this method to deal with elliptic lower dimensional tori. Theadditional technical difficulties are related to resonances between the basic frequencies of the tori and the oscillations in the "normal directions", which are characterized by means of reducibility in order to obtain the geometric properties that we require in the proof.Furthermore, in order to study quasi-periodic invariant tori, valuable information is obtained from the frequency vector that characterizes the motion. Part of the work in this thesis has been to develop efficient numerical methods for the study of one dimensional quasi-periodic motions in a wide set of contexts. Our methodology is an extension of a recently developed approach to compute rotation numbers of circle maps (see [5]) based on suitable averages of iterates of the map. On the one hand, the ideas of [5] have been adapted to compute derivatives of the rotation number for parametric families of circle diffeomorphisms, thus obtaining powerful tools (for example, we can implement Newton-like methods) for the study of Arnold Tongues and invariant curves for twist maps, if we can build a circle map using suitable coordinates. On the other hand, we have developed a solidly justified method that allows us to avoid the practical difficulty of looking for these coordinates, thus extending the methods to more general contexts such as non-twist maps or quasi-periodic signals.[1] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its applications, volume 69 of Proc. Sympos. Pure Math., pages 175-292. Amer. Math. Soc., 2001.[2] R. de la Llave, A. Gonzàlez, À. Jorba, and J. Villanueva. KAM theory without action-angle variables. Nonlinearity, 18(2):855-895, 2005.[3] E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered tori by a parametrization method. Part I: Maps and flows in finite dimensions. J. Differential Equations, 246:3136-3213, 2009.[4] R. de la Llave , A. González and A Haro. Non-twist KAM theory. In preparation.[5] T.M. Seara and J. Villanueva. On the numerical computation of Diophantine rotation numbers of analytic circle maps. Phys. D, 217(2):107-120, 2006.
13

Connectivity of Julia sets of transcendental meromorphic functions

Taixés i Ventosa, Jordi 22 September 2011 (has links)
Newton's method associated to a complex holomorphic function f is defined by the dynamical system Nf(z) = z – f(z) / f'(z). As a root-finding algorithm, a natural question is to understand the dynamics of Nf about its fixed points, as they correspond to the roots of the function f. In other words, we would like to understand the basins of attraction of Nf, i.e., the sets of points that converge to a root of f under the iteration of Nf. Basins of attraction are actually just one type of stable component or component of the Fatou set, defined as the set of points for which the family of iterates is defined and normal locally. The Julia set or set of chaos is its complement (taken on the Riemann sphere). The study of the topology of these two sets is key in Holomorphic Dynamics. In 1990, Mitsuhiro Shishikura proved that, for any non-constant polynomial P, the Julia set of NP is connected. In fact, he obtained this result as a consequence of a much more general theorem for rational functions: If the Julia set of a rational function R is disconnected, then R has at least two weakly repelling fixed points. With the final goal of proving the transcendental version of this theorem, in this Thesis we see that: If a transcendental meromorphic function f has either a multiply-connected attractive basin, or a multiply-connected parabolic basin, or a multiply-connected Fatou component with simply-connected image, then f has at least one weakly repelling fixed point. Our proof for this result is mainly based in two techniques: quasiconformal surgery and the study of the existence of virtually repelling fixed points. We conclude the Thesis with an idea of the strategy for the proof of the case of Herman rings, as well as some ideas for the case of Baker domains, which is left as a subject for a future project.

Page generated in 0.0486 seconds