• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 35
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 129
  • 129
  • 70
  • 64
  • 34
  • 30
  • 29
  • 28
  • 28
  • 27
  • 26
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Tapped-Inductor Buck DC-DC Converter

Chadha, Ankit January 2019 (has links)
No description available.
92

Reliability Investigations of MOSFETs using RF Small Signal Characterization

Chohan, Talha 18 September 2023 (has links)
Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliography
93

Small Signal Stability of Power Systems With Increased Converter Based Power Production

Kjellson, Gustav, Gustafsson, Josefin January 2022 (has links)
The aim of this project is to analyze how increasing the share of converter-based power production in a power system affects the small signal stability. The project also aims to stabilize systems using Power System Stabilizers (PSSs), and examine the effect of two different types of power electronic converters: grid following (GFL) and grid forming (GFM). To do this, a short-circuit fault is simulated in a two-area four-machine power system using DIgSILENT PowerFactory. The project examines how replacing one of the synchronous machines with a converterbased power source affects the system’s stability. Modal analysis is used to assess the small signal stability, as well as to tune the PSS. In the project PSSs are successfully used to stabilize systems, both with and without converter-based power production. The study also finds that implementing power production using GFL worsens the small signal stability while GFM improves it. / Syftet med det här projektet är att analysera hur den ökande andelen converter baserad elproduktion påverkar small signal stability i ett elkraftsystem. Projektets syft är också att stabilisera system med Power System Stabilizers (PSSs), och undersöka påverkan av två typer av effektelektronik: grid following converter (GFL) och gird forming converter (GFM). Det görs genom att simulera ett kortslutningsfel i ett elkraftsystem med DIgSILENT PowerFactory. I projektet undersöks hur systemets stabilitet påverkas av att ersätta en synkrongenerator med effektelektronik-kopplad elproduktion. Egenvärdesanalys används för att undersöka small signal stability och implementera PSS. I projektet lyckas stabiliseringen med PSS för både systemet med och utan effektelektronik-kopplade energikällor. Studien visar också att genom implementeringen av energikällor med sämras stabiliteten, medan GFM förbättrar den. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
94

Tuning of Power System Stabilizers to Damp Out Power Oscillations

Viil, Joel, Seisay, Marcus January 2021 (has links)
With the rise of global sustainability energy initiatives,the implementation of renewable energy sources infuture electrical grids is increasing. Many of the renewableenergy sources are however intermittent, meaning they providevarying levels of power. As grids meet the demand of largerloads of intermittent renewable energy sources, small signalinstability arises as result of the power oscillations. Small signalinstability occurs when a system cannot return to steady stateafter being exposed to small disturbances. One method to damppower oscillations in an unstable system is by using a PowerSystem Stabilizer (PSS). The goal of this project is to tunea PSS or PSSs required to successfully damp out the poweroscillations in a system which is small signal unstable without anyPSSs connected. The PSSs are tuned through a trial and errorapproach, and the system is a Kundur two-area four-machineMATLAB Simulink model. Overall, the trial and error methodis successful in tuning PSSs, which damp out the system’s poweroscillations. Other methods of tuning are discussed and comparedin terms of efficiency to damp out power oscillations. / Med en ökning av globala hållbarhetsinitiativförväntas implementeringen av förnybara energikälloröka i elnäten. Förnyelsebara energikällor som sol och vindär intermittenta, vilket innebär att de ger varierande effektnivåer.När nätet belastas med intermittenta energikällor uppstårlågfrekvensfel, vilket skapar oscillationer i spänning. För attdämpa svängningarna i ett instabilt system kan en Power SystemStabilizer (PSS) användas. Målet med projektet är att regulera enPSS som dämpar svängningarna i ett system som har lågfrekvensfel.En metod baserat på trial-and-error används för att regleraPSS:en. Detta görs i en Kundur Two-Area four machine Systemsimuleringsmodell i mjukvaruprogrammen Simulink och Matlab.Trial-and-error-metoden lyckas reglera svängningarna med hjälpav två PSS som dämpar effektsvängningarna i systemet. Irapporten diskuteras även alternativa metoder för att dämpasvängningarna i ett instabilt system. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
95

Performance Quantification of Interarea Oscillation Damping Using HVDC

Björk, Joakim January 2019 (has links)
With the transition towards renewable energy, and the deregulation of the electricity market, generation patterns and grid topology are changing. These changes increase the need for transfer capacity. One limiting factor, which sometimes leads to underutilization of the transmission grid, is interarea oscillations. These system-wide modes involve groups of generators oscillating relative to each other and are sometimes hard to control due to their scale and complexity. In this thesis we investigate how high-voltage direct current (HVDC) transmission can be used to attenuate interarea oscillations. The thesis has two main contributions. In the first contribution we show how the stability of two asynchronous grids can be improved by modulating the active power of a single interconnecting HVDC link. One concern with modulating HVDC active power is that the interaction between interarea modes of the two grids may have a negative impact on system stability. By studying the controllability Gramian, we show that it is always possible to improve the damping in both grids as long as the frequencies of their interarea modes are not too close. For simplified models, it is explicitly shown how the controllability, and therefore the achievable damping improvements, deteriorates as the frequency difference becomes small. The second contribution of the thesis is to show how coordinated control of two (or more) links can be used to avoid interaction between troublesome interarea modes. We investigate the performance of some multivariable control designs. In particular we look at input usage as well as robustness to measurement, communication, and actuator failures. Suitable controllers are thereby characterized. / Övergången till förnybar energi och avregleringen av elmarknaden leder till förändrade produktions-och överföringsmönster. Dessa förändringar medför behov av en ökad överföringskapacitet. En begränsande faktor, som kan leda till ett underutnyttjande av stamnätet, är interareapendlingar. Dessa systemövergripande pendlingar involverar grupper av generatorer som svänger i förhållande till varandra. Interareapendlingar är ibland svåra att styra på grund av deras skala och komplexitet. I denna avhandling undersöker vi hur förbindelser med högspänd likström, engleska high-voltage direct current (HVDC), kan användas för att dämpa interareapendlingar. Avhandlingen har två huvudbidrag. I det första bidraget visar vi hur stabiliteten hos två olika synkrona nät kan förbättras genom att modulera den aktiva effekten hos en enda HVDC-länk. Ett bekymmer med aktiv effektmodulering är att växelverkan mellan interareapendlingar hos de två näten kan ha en negativ inverkan på systemets stabilitet. Genom att studera styrbarhetsgramianen visar vi att det alltid är möjligt att förbättra dämpningen i båda näten så länge som frekvenserna hos deras interareapendlingar inte ligger för nära varandra. För förenklade modeller visas det uttryckligen hur styrbarheten och därmed de möjliga dämpningsförbättringarna, försämras då frekvensskillnaden blir liten. Avhandlings andra bidrag visar hur koordinerad styrning av två (eller fler) länkar kan användas för att undvika växelverkan mellan besvärliga interareapendlingar. Vi undersöker prestandan hos olika typer av flervariabla regulatorer. I synnerhet undersökers styrsignalsanvändning samt robusthet mot mät-, kommunikations- och aktuatorfel. Därigenom karakteriseras lämpliga regulatortyper. / <p>QC 20190308</p>
96

Modeling and Analysis of a Dc Power Distribution System in 21st Century Airlifters

Louganski, Konstantin P. 30 October 1999 (has links)
A DC power distribution system (PDS) of a transport aircraft was modeled and analyzed using MATLAB/Simulink software. The multi-level modeling concept was used as a modeling approach, which assumes modeling subsystem of the PDS at three different levels of complexity. The subsystem models were implemented in Simulink and combined into the whole PDS model according to certain interconnection rules. Effective modeling of different scenarios of operation was achieved by mixing subsystem models of different levels in one PDS model. Linearized models were obtained from the nonlinear PDS model for stability analysis and control design. The PDS model was used to examine the system stability and the DC bus power quality under bidirectional power flow conditions. Small-signal analysis techniques were employed to study stability issues resulting from subsystem interactions. The DC bus stability diagram was proposed for predicting stability of the PDS with different types of loads without performing an actual stability test based on regular stability analysis tools. Certain PDS configurations and operational scenarios leading to instability were identified. An analysis of energy transfer in the PDS showed that a large energy storage capacitor in the input filter of a flight control actuator is effective for reduction of the DC bus voltage disturbances produced by regenerative action of the actuator. However, energy storage capacitors do not provide energy savings in the PDS and do not increase its overall efficiency. / Master of Science
97

Centralized Control of Power System Stabilizers

Sanchez Ayala, Gerardo 09 October 2014 (has links)
This study takes advantage of wide area measurements to propose a centralized nonlinear controller that acts on power system stabilizers, to cooperatively increase the damping of problematic small signal oscillations all over the system. The structure based on decision trees results in a simple, efficient, and dependable methodology that imposes much less computational burden than other nonlinear design approaches, making it a promising candidate for actual implementation by utilities and system operators. Details are given to utilize existing stabilizers while causing minimum changes to the equipment, and warranting improvement or at least no detriment of current system behavior. This enables power system stabilizers to overcome their inherent limitation to act only on the basis of local measurements to damp a single target frequency. This study demonstrates the implications of this new input on mathematical models, and the control functionality that is made available by its incorporation to conventional stabilizers. In preparation of the case of study, a heuristic dynamic reduction methodology is introduced that preserves a physical equivalent model, and that can be interpreted by any commercial software package. The steps of this method are general, versatile, and of easy adaptation to any particular power system model, with the aggregated value of producing a physical model as final result, that makes the approach appealing for industry. The accuracy of the resulting reduced network has been demonstrated with the model of the Central American System. / Ph. D.
98

Identification of small-signal dq impedances of power electronics converters via single-phase wide-bandwidth injection

Jaksic, Marko Dragoljub 24 January 2015 (has links)
AC and DC impedances of switching power converters are used for the stability analysis of modern power electronics systems at three-phase AC and single-phase DC interfaces. Therefore, a small-signal characterization algorithm for switching power converter, which is based on FFT, will be presented and explained. The presented extraction algorithm is general and can be used to obtain other small-signal transfer functions of arbitrary power converter switching simulation models. Furthermore, FFT algorithm is improved by using cross power spectral density functions for identification, resulting in an algorithm, which is more noise immune. Both small-signal identification algorithms are validated in simulations, and CPSD algorithm is used in experimental measurement procedure. Several wide bandwidth injection signals, among which are chirp, multi-tone, pulse and white noise, are compared and theoretically analyzed. Several hardware examples are included in the analysis. The second part of the dissertation will focus on the modeling of small-signal input dq admittance of multi-pulse diode rectifiers, providing comparison between well-known averaged value models (AVMs), parametric averaged value models (PAVM), the switching simulation model and hardware measurements. Analytical expressions for all four admittances present in the dq matrix are derived and analyzed in depth, revealing the accuracy range of the averaged models. Furthermore, a hardware set-up is built, measured and modeled, showing that the switching simulation model captures nonlinear sideband effects accurately. In the end, a multi-pulse diode rectifier feeding a constant power load is analyzed with modified AVM and through detailed simulations of switching model, proving effectiveness of the proposed modifications. The third part describes implementation and design of a single-phase multi-level single-phase shunt current injection converter based on cascaded H-bridge topology. Special attention is given toward the selection of inductors and capacitors, trying to optimize the selected component values and fully utilize operating range of the converter. The proposed control is extensively treated, including inner current, outer voltage loop and voltage balancing loops. The designed converter is constructed and integrated with measurement system, providing experimental verification. The proposed multi-level single-phase converter is a natural solution for single-phase shunt current injection with the following properties: modular design, capacitor energy distribution, reactive element minimization, higher equivalent switching frequency, capability to inject higher frequency signals, suitable to perturb higher voltage power systems and capable of generating cleaner injection signals. Finally, a modular interleaved single-phase series voltage injection converter, consisting of multiple paralleled H-bridges is designed and presented. The decoupling control is proposed to regulate ac injection voltage, providing robust and reliable strategy for series voltage injection. The designed converter is simulated using detailed switching simulation model and excellent agreement between theory and simulation results are obtained. The presented control analysis treats different loads, examining robustness of the circuit to load variations. Simulation model and hardware prototype results verify the effectiveness of the proposed wide-bandwidth identification of small-signal dq impedances via single-phase injections. / Ph. D.
99

Wide Area Analysis and Application in Power System

Wu, Zhongyu 08 January 2010 (has links)
Frequency monitoring network (FNET) is an Internet based GPS synchronized wide-area frequency monitoring network deployed at distribution level. At first part of this thesis, FNET structure and characteristics are introduced. After analysis and smoothing FDR signals, the algorithm of event trigger is present with Visual C++ DLL programming. Estimation of disturbance location method is discussed based on the time delay of arriving (TDOA) in the second part of this work. In this section, author shows the multiply method to calculate event time, which is important when deal with pre-disturbance frequency in TDOA part. Two event kinds are classified by the change of frequency and the linear relationship between change of frequency and imbalance of generation and load power is presented. Prove that Time Delay of Arrival (TDOA) is a good algorithm for estimation event location proved by real cases. At last, the interface of DLL module and the key word to import and export DLL variables and function is described. At last, PSS compensation optimization with a set of nonlinear differential algebraic equations (DAE) is introduced in detail. With combining the bifurcation theory of nonlinear system and the optimization theory, the optimal control of small-signal stability of power electric systems are solved. From the perspective of stability margin, global coordination of controller parameters is studied to ensure the stable operation of power grids. The main contents of this thesis include: ï¼ 1ï¼ Models of power systems and test power electric systems. Tht5e dynamic and static models of the elements of power systems, such as generatorbbs, AVRs, PSSs, loads and FACTS controllers are presented. Method of power system linearization modeling is introduced. Three test power systems, WSCC 9-bus system, 2-area system, New England 39-bus system, are used in thesis. ï¼ 2ï¼ Multi-objective optimizations based on bifurcation theory. The optimization models, damping control-Hopf bifurcation control, voltage control-damping control, are presented. Pareto combined with evolutionary strategy (ES) are used to solve multi-objective optimizations. Based on traditional PSS parameters optimizations, it can be formulated as a multi-objective problem, in which, two objectives should be taken into account. The minimum damping torque should be identified. / Master of Science
100

Aplicação de técnicas de estimação modal para análise da estabilidade a pequenas perturbações de sistemas de distribuição com geração distribuída / Application of modal estimation techniques for small-signal stability assessment in distribution system with distributed generation

Fernandes, Tatiane Cristina da Costa 27 February 2012 (has links)
Ao longo das últimas décadas, o advento de geradores síncronos distribuídos têm modificado significativamente a operação dinâmica de sistemas de distribuição. Características dinâmicas que antes eram típicas de sistemas de transmissão estão agora também presentes em sistemas de distribuição. Problemas relacionados a oscilações eletromecânica mal amortecidas, um dos focos de análise do estudo da estabilidade a pequenas perturbações, podem agora afetar também os sistemas de distribuição devido à inserção de geradores síncronos. Ferramentas usualmente utilizadas em sistemas de transmissão para a análise de tais oscilações não são completamente adequadas para analisar os fenômenos que ocorrem nos sistemas de distribuição com geração distribuída, devido a características peculiares desses sistemas, tais como o desequilíbrio de suas fases. Assim, essa pesquisa propõe um procedimento alternativo para analisar a estabilidade a pequenas perturbações de sistemas de distribuição, através da aplicação de técnicas de estimação modal. Abordam-se duas técnicas de estimação modal: os métodos de Prony e o ESPRIT. O primeiro método consiste em uma ferramenta já consagrada para a identificação de oscilações eletromecânicas de baixa frequência. Enquanto o segundo é uma t´técnica usualmente aplicada em análise de transitórios com desempenho satisfatório no contexto de qualidade de energia. Simulações não lineares são realizadas no software ATP, inicialmente sobre um sistema trifásico equilibrado e tais técnicas são aplicadas e comparadas, tornando possível a validação cruzada de ambos os métodos na identificação do modo eletromecânico do sistema. Na sequência, simulações são realizadas em um um sistema trifásico desequilibrado, permitindo avaliar o efeito do desbalanço da carga sobre as oscilações eletromecânicas, sendo essa uma das maiores contribuições desse trabalho. A principal conclusão adquirida é o fato de que um Power System Stabilizer (PSS) pode ser usado para mitigar os impactos prejudiciais das oscilações eletromecânicas em um gerador síncrono distribuído, sendo que esse PSS pode ser projetado a partir de técnicas típicas, assumindo um funcionamento equilibrado desse gerador, e ainda assim ter um desempenho satisfatório para os casos desequilibrados estudados. / Over the last few decades, the advent of distributed synchronous generators has significantly modified the operation and dynamics of distribution systems. Dynamic behaviors that were typical of transmission systems are now also present in distribution systems. Problems related to poorly damped electromechanical oscillations, the focus of small-signal stability studies, can now also affect the distribution systems due to the insertion of synchronous generators. Tools usually employed in large systems for the analysis of these oscillations are not completely appropriate to analyze this phenomena in distribution systems with distributed generation, due to particular characteristics of these systems, such as load imbalance. Therefore, this research proposes an alternative procedure to analyze the small-signal stability of distribution systems, through the application of modal estimation techniques. Two modal estimation techniques are used: the Prony and ESPRIT methods. The former consists of a well-established tool for identifying low-frequency oscillations and the latter was chosen due to its satisfactory performance in works related to power quality, where it is applied in transient analysis. Initially, both modal estimation techniques are applied to the results of nonlinear simulations performed in the Alternative Transients Program for balanced three-phase systems. The modes identified by both techniques exhibit a close match, which provides a cross validation between these techniques. In the sequence, simulations are performed in three-phase unbalanced systems, allowing an evaluation of the effect of load imbalance on the electromechanical oscillations (which is another major contribution of this work). Furthermore, it is concluded from the obtained results that a Power System Stabilizer, designed under the assumption of a balanced operation of the distribution system, can be effectively used to mitigate the detrimental effects of the poorly damped oscillations even when the system operates under unbalanced load conditions.

Page generated in 0.0503 seconds