• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1774
  • 436
  • 259
  • 249
  • 169
  • 129
  • 86
  • 45
  • 39
  • 38
  • 32
  • 29
  • 24
  • 20
  • 14
  • Tagged with
  • 3828
  • 692
  • 487
  • 480
  • 416
  • 400
  • 360
  • 343
  • 342
  • 335
  • 334
  • 292
  • 284
  • 271
  • 254
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Impact of DOA (direction of arrival) : in 4G MIMO Systems

Pan, Yaobin January 2015 (has links)
No description available.
222

Wireless Communication in Smart Housing

Liu, Luyan January 2014 (has links)
With the development of computer and information technology, information and network will be the inevitable trend of smart home which aims to offer a comfortable, efficient, and convenient home. In this thesis, the background, developments and limitations of smart home systems will be described. Wired and wireless technologies applied on the smart home network will be analyzed and a comparison of them will be made. Finally, the ZigBee technology is selected to design the wireless communication network. For the system design, the thesis describes an idea where cluster topology is chosen to design the smart home system and demonstrates the process of networking as well. Based on the Labview platform, a smart home system will be simulated to achieve the functions included in data acquisition, analysis, display and storage. More specially, I will focus on temperature monitoring and control of heating and cooling systems. Finally, an analysis of the advantages and disadvantages of the smart home system is given.
223

Energy Efficient RPL Routing Protocol in Smart Buildings

Rezaei, Elnaz January 2014 (has links)
Energy is an important factor that must be considered by multi-hop wireless mesh routing protocols because most sensors are powered by batteries with a limited capacity. We focus on the industry-standard RPL (Routing Protocol over Low-power and lossy networks) routing protocol that must find energy-efficient paths in low-power and lossy networks. However, the existing RPL objective functions route based on hop-count and ETX (expected transmission count) metrics alone, ignoring the energy cost of data transmission and reception. We address this issue in two ways. First, we design an objective function for RPL that finds paths that require, in expectation, the minimum amount of energy. Second, we design a probing mechanism which configures the transmission power of sensors to minimize energy consumption. The proposed approach is implemented and evaluated using simulations as well as on a small testbed with two Zolertial Z1 motes.
224

Wind power integration in island-based smart grid projects : A comparative study between Jeju Smart Grid Test-bed and Smart Grid Gotland

Piehl, Hampus January 2014 (has links)
Smart grids seem to be the solution to use energy from renewable and intermittent energy sources in an efficient manner. There are many research projects around the world and two of them are Jeju Smart Grid Test-bed and Smart Grid Gotland. They have in common that they are both island-based projects and connected to the Powergrid on the mainland by HVDC-link. The purpose of this thesis is to compare the two projects and find out what challenges and strategies they have related to wind power integration. The objective of the two projects were somewhat different. Jeju Smart Grid Test-bedare the starting point for South Korea’s smart grid road map, where the objective ultimately is to construct a smart grid on a national scale in South Korea. For Smart Grid Gotland there are three main focus areas; electricity market, power quality and wind power integration. In this thesis focus is on wind power integration. Wind power integration in smart grids would benefit from energy storage technology connected to the wind power-park to even out the power output. Properties for a potential energy storage connected to Näsudden wind power park situated on the southern tip of Gotland has been investigated and the result is that such an energy storage would likely need to be big and expensive, but able to stabilize the power output.
225

Free-space optical interconnection of digital electronics

Baillie, Douglas Alexander January 1996 (has links)
No description available.
226

Design and Implementation of an Ionic-Polymer-Metal-Composite Biomimetic Robot

Chang, Yi-Chu 03 October 2013 (has links)
Ionic polymer metal composite (IPMC) is used in various bio-inspired systems, such as fish and tadpole-like robots swimming in water. The deflection of this smart material results from several internal and external factors, such as water distribution and surface conductivity. IPMC strips with a variety of water concentration on the surfaces and surface conductivity show various deflection patterns. Even without any external excitation, the strips can bend due to non-uniform water distribution. On the other hand, in order to understand the effects of surface conductivity in an aquatic environment, an IPMC strip with two wires connected to two distinct spots was used to demonstrate the power loss due to the surface resistance. Three types of input signals, sawtooth, sinusoidal, and square waves, were used to compare the difference between the input and output signals measured at the two spots. Thick (1-mm) IPMC strips were fabricated and employed in this research to sustain and drive the robot with sufficient forces. Furthermore, in order to predict and control the deflection, researchers developed the appropriate mathematical models. The special working principle, related to internal mobile cations with water molecules, however, makes the system complicated to be modeled and simulated. An IPMC strip can be modeled as a cantilever beam with loading distribution on the surface. Nevertheless, the loading distribution is non-uniform due to the non-perfect surface metallic plating, and four different kinds of imaginary loading distribution are employed in this model. On the other hand, a reverse-predicted method is used to find out the transfer function of the IPMC system according to the measured deflection and the corresponding input voltage. Several system-identification structures, such as autoregressive moving average with exogenous (ARX/ARMAX), output-error (OE), Box-Jenkins (BJ), and prediction-error minimization (PEM) models, are used to model the system with their specific mathematic principles. Finally, a novel linear time-variant (LTV) concept and method is introduced and applied to simulate an IPMC system. This kind of model is different from the previous linear time-invariant (LTI) models because the IPMC internal environment may be unsteady, such as free cations with water molecules. This phenomenon causes the variation of each internal part. In addition, the relationship between the thickness of IPMC strips and the deflection can be obtained by this concept. Finally, based on the experimental results above, an aquatic walking robot (102 mm × 80 mm × 43 mm, 39 g) with six 2-degree-of-freedom (2-DOF) legs has been designed and implemented. It walked in water at the speed of 0.5 mm/s. The average power consumption is 8 W per leg. Each leg has a thigh and a shank to generate 2-DOF motions. Each set of three legs walked together as a tripod to maintain the stability in operation.
227

Novel Decentralized Operation Schemes for Smart Distribution Systems

Elkhatib, Mohamed January 2012 (has links)
Recently, there have been many initiatives to incorporate advanced controls, two way communications, digital technologies and advanced power system components in the operation and control of power distribution systems. These initiatives are aiming to realize what becomes known as the “Smart grid”. It is expected that a Smart Grid will lead to enhancement in the reliability and efficiency of the power system. The movement towards the Smart Grid is motivated by many factors; the need to integrate more renewable power to mitigate the global warming, the increasing interest in connecting more distributed generation (DG) as a way to postpone large investment in transmission and bulk generation, and the need to increase the reliability of the power system overall to minimize disturbance costs. It is the overall goal of this research to introduce novel distribution system operation techniques to assist in the effort of realizing the “Smart Distribution System” in both normal and system restoration modes. In particular, three main operation functions are dealt with in this research work; Voltage Control, Reactive Power Control and Distribution System Restoration. First for Voltage Control, a reliable and efficient method is proposed to control voltage regulators in order to enable the regulation of multiple feeders with diversified loads using only one regulator provided that no DG is connected to the feeders. Regulator’s tap is selected based on the solution of an integer linear optimization problem. The method has a closed form solution for the optimal tap; that is valuable for real time operation. In addition, necessary condition for feasible solutions is examined. Next, a novel coordinated voltage control scheme is proposed to enable the voltage regulator to efficiently regulate the voltage of multiple feeders in the presence of DGs. The proposed technique is based on placing a Remote Terminal Unit (RTUs) at each DG and each line capacitor. These RTUs coordinate together, through communication, and form a multi-agent system. An important contribution of this research is that the proposed scheme provides the minimum hardware requirement to efficiently estimate the voltage profile of a feeder with DGs. The proposed scheme enables the integration of more DGs into the system by, efficiently, coordinating the operation of voltage regulators and DGs to mitigate voltage rise problem caused by the connection of DGs to the system. Second, for Reactive Power Control, a decentralized reactive power control scheme is proposed to optimally control switched shunt capacitors of the system in order to minimize system losses and maintain acceptable voltage profile. The proposed algorithm provides capacitors with “Advanced Voltage Sensing” capability to enable capacitors to switch in and out according to the global minimum and maximum voltage of the feeder. The proposed technique utilizes the same RTU used for voltage control and relies on the voltage profile estimation technique proposed in this research for the coordinated voltage control. In addition, novel decentralized algorithm is proposed to estimate the feeder voltage profile change as a result of injecting reactive power at the capacitor bus. The proposed reactive power control scheme can be used to coordinate the operation of any number of capacitors connected to the distribution system. Combining voltage control and reactive power control schemes, generalized coordinated voltage control is proposed to coordinate between DGs, shunt capacitors and voltage regulators in order to achieve optimal voltage control for the distribution system and solve the steady state voltage rise problem caused by the connection of DGs, hence, allowing more DGs to be connected to the system. Over and above, the proposed generalized coordinated voltage control enables the realization of a new operation-time DG connection impact assessment concept. Based on this concept, the system will carry out a real-time assessment and decide, based on the available control actions, the maximum DG power that can be allowed to connect to the system at particular operating conditions. This new concept will allow great flexibility to the connection of DGs, most notably, when, due to a change in system configuration, the DG is needed to be connected to a feeder other than the one it was planned for during the planning stage. The last operation function dealt with in this research work is the distribution system restoration. Novel decentralized distribution system restoration scheme is proposed. The proposed scheme is based on dividing the distribution system into zones based on the availability of disconnecting switches. Each zone is controlled by an Agent. The restoration is done based on the coordination between these Agents. Proposed communication protocols between Agents are discussed in details. The goal of the proposed restoration scheme is to maximize the restored power while preserving the radial structure of the distribution system and without exceeding the thermal limit of any equipment in the system. As the proposed technique does not assume any supervision from any central point, this technique will enable the realization of a self-healing distribution system restoration.
228

On Using Storage and Genset for Mitigating Power Grid Failures

Singla, Sahil January 2013 (has links)
Although modern society is critically reliant on power grids, even modern power grids are subject to unavoidable outages due to storms, lightning strikes, and equipment failures. The situation in developing countries is even worse, with frequent load shedding lasting several hours a day due to unreliable generation. We study the use of battery storage to allow a set of homes in a single residential neighbour- hood to avoid power outages. Due to the high cost of storage, our goal is to choose the smallest battery size such that, with high target probability, there is no loss of power despite a grid out- age. Recognizing that the most common approach today for mitigating outages is to use a diesel generator (genset), we study the related problem of minimizing the carbon footprint of genset operation. Drawing on recent results, we model both problems as buffer sizing problems that can be ad- dressed using stochastic network calculus. We show that this approach greatly improves battery sizing in contrast to prior approaches. Specifically, a numerical study shows that, for a neigh- bourhood of 100 homes, our approach computes a battery size, which is less than 10% more than the minimum possible size necessary to satisfy a one day in ten years loss probability (2.7 ∗ 10^4 ). Moreover, we are able to estimate the carbon footprint reduction, compared to an exact numerical analysis, within a factor of 1.7. We also study the genset scheduling problem when the rate of genset fuel consumption is given by an affine function instead of a linear function of the current power. We give alternate scheduling, an online scheduling strategy that has a competitive ratio of (k1 G/C +k2)/(k1+k2) , where G is the genset capacity, C is the battery charging rate, and k1, k2 are the affine function constants. Numerically, we show that for a real industrial load alternate scheduling is very close to the offline optimal strategy.
229

Smart TV front-end application for cloud computing

Miguel Montero, Jaime January 2012 (has links)
This master project focuses on the development of a front-end applicationfor cloud computing. Traditionally, televisions have been excluded from thealways connected world. With the appearance of the smart televisions it isnow possible to connect them to the Internet. However, there still exists agap between televisions and services in the cloud.To solve the problem,we have developed a JavaScript application. This application allows the user to log into their CloudMe account from a SamsungSmartTV with multimedia support. This application is centered on improving the responsiveness performance of a cloud computing application. It alsoenhances the user experience by creating a user-friendly UI for a television.During the course of this thesis, the application and its functionalities havebeen studied, designed, developed, optimized and finally tested. We havealso done a set of measurements to validate the responsiveness of the proposed design.The development of this TV application shows the TV is a potential targetdevice for cloud computing services due to its better resources and capabilities in di↵erent areas such as multimedia reproduction.
230

The use of a single smart card for transit and non-transit systems : a Singapore case study

Senkodu, Chandra Segaran January 2008 (has links)
Governments around the world are investing heavily in smart card infrastructure to enhance transport services. Studies show that smart card technology can improve reliability, reduce maintenance costs, provide a longer life span, and allow more applications to be incorporated in a transit card. As a result, policy makers and transport owners are interested in extending the use of smart cards from transit to non-transit systems to capitalise on their investment. However, little is known about the conditions under which customers would adopt transit cards for non-transit transactions. In Singapore, a contactless transit smart card (ez-link card) was launched in April 2002 to replace the magnetic stored-value card, which was commissioned in December 1990. The ez-link card was introduced as an integrated public transport card for use both on buses and Mass Rapid Transit (MRT) and Light Rail Transit (LRT) trains. This study was undertaken to evaluate customers' response to the use of the ez-link card for non-transit transactions. As the ez-link card is an information technology (IT) product and the first of its kind in the Singapore public transport system, there is a need to understand and appreciate how customers would respond to the change in its use. Various theories and models such as the Technology Acceptance Model (TAM), Theory of Diffusion (TD), Theory of Reasoned Action (TRA) and Theory of Planned Behavior (TPB) were reviewed for their potential to understand and predict customers' intentions to use the ez-link card for non-transit transactions. After much review, the TPB was adopted for identifying the research model and hypotheses in this study. The TPB was used to develop the research model and hypotheses comprising one dependent variable (intention – INT) and three independent variables (attitude - ATT, subjective norm - SN and perceived behavioral control - PBC). The TPB was also used to design the questionnaire comprising 16 items to collect data from customers using the ez-link card at bus interchanges and train stations located around Singapore. A pilot survey was conducted on 21 respondents using the intercept interview technique. The data were collected and analysed. With slight modifications, the questionnaire was then used with 300 respondents in the final survey. Descriptive and inferential statistics were used to analyse the data collected from 293 respondents (seven were outliers) using the intercept interview technique in the final survey. Regression analysis explained 80% of the variance in the customers' intention to use the ez-link card for non-transit transactions. While the results provided initial support for the TPB, further examination of the data using exploratory factor analysis revealed high correlations between the ATT and SN. This study concluded that a more parsimonious model would only extract two independent variables (Desirability - DES and Perceived Convenience – PEC) to predict customers' intention to use the ez-link card for non-transit transactions. DES and PEC were used to develop a new

Page generated in 0.0425 seconds