• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 85
  • 49
  • 43
  • 14
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 631
  • 631
  • 267
  • 193
  • 138
  • 66
  • 64
  • 59
  • 52
  • 48
  • 47
  • 46
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Airway Dynamics and the Role of Zyxin

Rosner, Sonia Rebecca 06 June 2014 (has links)
Morbidity and mortality attributable to asthma arise mainly from contraction of airway smooth muscle (ASM) and resulting bronchospasm. Bronchospasm that is induced in the laboratory is easily reversed by a spontaneous deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthma is not. In response to a spontaneous DI, contracted ASM fluidizes rapidly and then resolidifies slowly, but molecular mechanisms accounting for these salutary bronchodilatory responses -and their dramatic breakdown in asthma- are unknown. Using a multi-scale approach, I show here that both the baseline contractile force and the fluidization response of ASM are independent of the cytoskeletal protein zyxin, whereas the resolidification response is zyxin-dependent. At the levels of the stress fiber, the isolated cell, and the integrated airway, zyxin acts to stabilize the contractile apparatus and promote the resolidification response. More than just the motor of contraction, ASM is thus viewed in the broader context of a self-healing active material wherein resolidification and its molecular determinants contribute to the biology of bronchospasm.
272

Exploring the role of microRNAs in airway smooth muscle biology and asthma therapy

Hu, Ruoxi 06 June 2014 (has links)
The pathophysiology of asthma is characterized by airway inflammation, remodeling and hyper-responsiveness. Phenotypic changes in airway smooth muscle cells (ASM) play a pivotal role in the pathogenesis of asthma. ASM cells promote inflammation and are key drivers of airway remodeling. While airway hyper responsiveness and inflammation can be managed by bronchodilators and anti-inflammatory drugs, ASM remodeling is poorly managed by existing therapies. Therefore, targeting ASM remodeling remains a challenge, and a deeper understanding of the molecular mechanism that regulates ASM phenotypes in asthma pathogenesis will facilitate the search for next-generation asthma therapy. MicroRNAs are small yet versatile gene tuners that regulate a variety of cellular processes, including cell proliferation and inflammation - two phenotypes that are often altered in asthmatic ASM. We thus hypothesized that microRNAs regulate ASM phenotypes in asthma and represent new targets for future therapy. In this thesis, we used a genomic approach that combined next-generation sequencing with functional cellular assays to characterize the role of microRNAs in regulating airway smooth muscle function and drug response to conventional therapies. In Chapter 2, we identified miR-10a as the most abundant microRNA expressed in the primary human airway smooth muscle (HASM) cells. Using an unbiased target identification approach, we identified several novel potential targets of miR-10a, including the catalytic subunit alpha of PI3 kinase (PIK3CA)--the central component of the PI3K pathway. We demonstrated that miR-10a directly suppresses PIK3CA expression by targeting its 3' Untranslated region (3'-UTR). Inhibition of PIK3CA by miR-10a reduced AKT phosphorylation and blunted the expression of cyclins and cyclin-dependent kinases that are required for HASM proliferation. In Chapter 3, we examined the effect of conventional asthma therapies on miRNA expression. While we did not find significant changes in miRNA levels, it remains to be determined whether microRNAs play a role in ASM tissue response to asthma therapy. Our study is the first to examine the role of microRNAs in ASM proliferation. Results from our study identified a novel microRNA-mediated regulatory mechanism of PI3K signaling and ASM proliferation. They suggest further that miR-10a is a potential therapeutic target to treat airway remodeling in asthma.
273

Το αγγειακό λείο μυϊκό κύτταρο : μοριακή δομή και ρόλος στην παθογένεια της καρδιαγγειακής νόσου

Κωστόπουλος, Χρήστος 21 July 2008 (has links)
Τα αγγειακά λεία μυικά κύτταρα (ΑΛΜΚ) αποτελούν το κυρίαρχο στοιχείο του μέσου χιτώνα των αιμοφόρων αγγείων, ενώ συμμετέχουν ενεργά και στο σχηματισμό και την ωρίμανση του καρδιαγγειακού συστήματος. Η δομή τους εξυπηρετεί την εκτέλεση της σημαντικότερης λειτουργίας τους, που είναι η συστολή. Αξιοσημείωτο χαρακτηριστικό των αγγειακών λείων μυικών κυττάρων αποτελεί η φαινοτυπική τους πλαστικότητα, δηλαδή η ικανότητα στροφής από το συσταλτικό σε έναν περισσότερο συνθετικό φαινότυπο, που λαμβάνει χώρα υπό προϋποθέσεις. Οι αλληλεπιδράσεις με τα υπόλοιπα κυτταρικά στοιχεία του τοιχώματος των αρτηριών και των έμμορφων συστατικών του αίματος, αλλά και η φαινοτυπική πλαστικότητα καθιστούν καθοριστικό το ρόλο των αγγειακών λείων μυικών κυττάρων στην παθογένεια της αθηροσκλήρωσης. / Vascular smooth muscle cells (VSMCs) comprise the main element of the tunica media of blood vessels, while they actively participate in the formation and maturation of the cardiovascular system. Their structure serves their basic function, which is contraction. An interesting feature of vascular smooth muscle cells is their phenotypic plasticity, the ability to shift from a contractile to a more synthetic phenotype, under certain conditions. The interaction with other cellular elements within the vascular wall or in the bloodstream, as well as their phenotypic plasticity, give vascular smooth muscle cells a decisive role in the pathogenesis of atherosclerosis.
274

The Effects of Mechanical Loading on the Local Myofibrogenic Differentiation of Aortic Valve Interstitial Cells

Watt, Derek Randall 25 July 2008 (has links)
Calcific aortic valve sclerosis is characterized by focal lesions in the valve leaflet. These lesions are rich in myofibroblasts that express α-SMA and cause fibrosis. Lesions tend to occur in regions of the leaflet that are subjected to large bending loads, suggesting a mechanobiological basis for myofibrogenic differentiation and valve pathogenesis. In this thesis, a bioreactor was developed to study the effect of physiological loading on myofibrogenic differentiation of valve interstitial cells. Cyclic loading of native porcine aortic valve leaflets ex vivo resulted in increased α-SMA expression, predominantly in the fibrosa and spongiosa (similar to sclerotic leaflets). Cofilin, an actin-binding protein, was also upregulated by loading, suggesting it plays a role in mechanically-induced myofibrogenesis. Similarly, loading of a tissue engineered aortic valve leaflet model resulted in increased α-SMA transcript and protein expression. These data support an integral role for mechanical stimuli in myofibrogenic differentiation and sclerosis in the aortic valve.
275

The Effects of Mechanical Loading on the Local Myofibrogenic Differentiation of Aortic Valve Interstitial Cells

Watt, Derek Randall 25 July 2008 (has links)
Calcific aortic valve sclerosis is characterized by focal lesions in the valve leaflet. These lesions are rich in myofibroblasts that express α-SMA and cause fibrosis. Lesions tend to occur in regions of the leaflet that are subjected to large bending loads, suggesting a mechanobiological basis for myofibrogenic differentiation and valve pathogenesis. In this thesis, a bioreactor was developed to study the effect of physiological loading on myofibrogenic differentiation of valve interstitial cells. Cyclic loading of native porcine aortic valve leaflets ex vivo resulted in increased α-SMA expression, predominantly in the fibrosa and spongiosa (similar to sclerotic leaflets). Cofilin, an actin-binding protein, was also upregulated by loading, suggesting it plays a role in mechanically-induced myofibrogenesis. Similarly, loading of a tissue engineered aortic valve leaflet model resulted in increased α-SMA transcript and protein expression. These data support an integral role for mechanical stimuli in myofibrogenic differentiation and sclerosis in the aortic valve.
276

The Development of a 3D Piezoelectric Active Microtissue Model for Airway Smooth Muscle

Walker, Matthew 08 April 2013 (has links)
Although asthma is primarily thought to be an inflammatory disease of the airways, it has recently been hypothesized that the altered mechanical environment of an asthmatic airway may contribute to the development of the disease through changes in cellular phenotype. In regards to this hypothesis, the effects of stretch on airway smooth muscle (ASM) have previously been investigated using 2D cell culture. However, over the last few years there has been an increasing appreciation to the importance of the role of the 3D extracellular matrix in the regulation of cellular response. For this reason, the work presented in this thesis covers the development of a device capable of high-throughput investigations into the effects of acute or chronic, uniaxial, oscillatory mechanical strain on an array of miniature, 3D, multi-cell, tissue-engineered constructs.
277

Platelet-Derived Growth Factor-BB is the Dominant Mitogen for Intestinal Smooth Muscle Cells in the Trinitrobenzenesulfonic Acid Model of Rat Colitis

Stanzel, ROGER 28 September 2012 (has links)
In normal adult physiology, intestinal smooth muscle cells (ISMC) are characterized as contractile and non-proliferative. Inflammation induces permanent changes to the intestine including hypertrophy of the smooth muscle layer largely due to smooth muscle cell (SMC) proliferation. While the consequences of this hyperplasia are largely unknown, increased muscularis mass may present permanent challenges to organ motility. Similar SMC hyperplasia is observed in other inflammatory pathologies including atherosclerosis and pulmonary arterial hypertension (PAH) where SMC de-differentiate into a ‘synthetic’ phenotype and the mitogens responsible for hyperplasia have been well studied. However, there are limited investigations of SMC mitogens in intestinal inflammation. The identification of these factors may be of critical importance in the case of intestinal strictures, whereby recurring inflammation can lead to bowel obstruction requiring surgical intervention. A novel, primary rat ISMC model was developed to identify the factors responsible for ISMC proliferation in vitro. Primary ISMC cultures are likely more representative of SMC in vivo than the commonly used late-passage cultures. As such, this primary ISMC model is valuable in the evaluation of mitogens involved in the onset of proliferation. This primary ISMC model was used to conduct a comprehensive evaluation of potential mitogens including basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and platelet-derived growth factor-BB (PDGF-BB. This work identified IGF-1 and PDGF-BB as ISMC mitogens. However, multiple lines of evidence indicated that PDGF-BB was a more potent mitogen and the involvement of PDGF-BB was subsequently examined in vivo using the trinitrobenzenesulfonic acid (TNBS) model of rat intestinal inflammation. While control ISMC lacked expression of the PDGF-BB receptor (PDGF-Rβ), robust expression was observed within only 6 hr following the induction of TNBS inflammation. By Day 2, when ISMC proliferation in vivo is maximal, freshly isolated ISMC showed on-going PDGF-Rβ activation that was further increased by exogenous PDGF-BB. Taken together, the conclusions from this work in vitro identify PDGF-BB as a potent ISMC mitogen in vivo. Further, this work establishes PDGF-BB and its receptor as potential targets in the medical treatment of intestinal stricture formation. / Thesis (Ph.D, Biology) -- Queen's University, 2012-09-24 19:26:57.201
278

THE ROLE OF THE NR4A ORPHAN NUCLEAR RECEPTOR NOR1 IN VASCULAR CELLS AND ATHEROSCLEROSIS

Zhao, Yue 01 January 2011 (has links)
The neuron-derived orphan receptor 1 (NOR1) belongs to the NR4A nuclear receptor subfamily. As an immediate early response gene, NOR1 is rapidly induced by a broad spectrum of physiological and pathological signals. Functional studies demonstrate NOR1 as a constitutively active ligand-independent nuclear receptor whose transcriptional activity is dependent on both expression level and posttranslational modifications. To date, an increasing number of studies have demonstrated a pivotal role of NOR1 in the transcriptional control of metabolism and the development of cardiovascular diseases. In this dissertation, we demonstrate NOR1 expression in endothelial cells and sub-endothelial cells of human atherosclerotic lesions. In response to inflammatory stimuli, NOR1 expression is rapidly induced in endothelial cells through an NF-κB-dependent signaling pathway. Functional studies reveal that NOR1 increases monocyte adhesion by inducing the expression of adhesion molecules VCAM-1 and ICAM-1 in endothelial cells. Transient transfection and chromatin immunoprecipitation assays identify VCAM-1 as a bona fide NOR1 target gene in endothelial cells. Finally, we demonstrate that NOR1-deficiency reduces hypercholesterolemia-induced atherosclerosis formation in apoE-/- mice by decreasing the macrophage content of the lesion. In smooth muscle cells (SMC), NOR1 was previously established as a cAMP response element binding protein (CREB) target gene in response to platelet-derived growth factor (PDGF) stimulation. CREB phosphorylation and subsequent binding of phosphorylated CREB to the NOR1 promoter play a critical role in inducing NOR1 expression. In this dissertation, we further demonstrate that histone deacetylase (HDAC) inhibition potentiates and sustains PDGF-induced NOR1 mRNA and protein expression in SMC. This augmented NOR1 expression is associated with increased phosphorylation of CREB, recruitment of phosphorylated CREB to the NOR1 promoter, and trans-activation of the NOR1 promoter. Additionally, HDAC inhibition also increases NOR1 protein half-life in SMC. Collectively, these findings identify a novel pathway in endothelial cells underlying monocyte adhesion and expand our knowledge of the epigenetic mechanisms orchestrating NOR1 expression in SMC. Finally, we establish a previously unrecognized atherogenic role of NOR1 in positively regulating monocyte recruitment to the vascular wall.
279

ANDROGEN INCREASES ANGIOTENSIN RECEPTOR TYPE 1A ON SMOOTH MUSCLE CELLS TO PROMOTE ANGIOTENSIN II-INDUCED ABDOMINAL AORTIC ANEURYSMS

Zhang, Xuan 01 January 2011 (has links)
The purpose of this study was to determine whether androgen promotes AT1aR expression on smooth muscle to confer high prevalence of AngII-induced AAAs in hyperlipidemic mice. In addition, we also investigate the role of androgen in the progression of established AngII-induced AAAs. First, we sought to examine the role of endogenous androgen in the growth of established AngII-induced AAAs. By castrating male mice, we demonstrated that removal of endogenous androgen significantly decreased the progressive lumen dilation of established AngII-induced AAAs in male ApoE-/- mice, but had no effect on external AAA diameters. These results suggest that androgen contributes to the progression of established AAAs through distinct mechanisms that differentially influence aortic lumen and wall diameters. We also investigate whether androgen regulates aortic AT1aR expression to promote AngII-induced AAA formation. Our data demonstrated that in male and female mice, both endogenous and exogenous androgen stimulate AT1aR level particularly in abdominal aortas. This androgen-dependent enhanced expression of abdominal aortic AT1aR was correlated with increased AngIIinduced AAA formation in male and female mice. Smooth muscle AT1aR deficiency significantly reduced luminal and external diameters of abdominal aortas as well as the incidence of AngII-induced AAAs in adult female mice administered exogenous androgen. Collectively, these results indicate that in adult mice androgen stimulate smooth muscle AT1aR expression to promote AngII-induced AAA formation. To determine the role of androgen during development on AT1aR expression on SMC and AngII-induced vascular pathologies, we exposed neonatal female mice to one single dose of testosterone. Our data demonstrated that neonatal testosterone administration dramatically increased AngII-induced AAA, atherosclerosis and ascending aortic aneurysms in adult female mice. In addition, smooth muscle AT1aR deficiency reduced effects of neonatal testosterone to promote AAAs, but had no effect on the other two AngII-induced vascular pathologies. In summary, our findings demonstrated that androgen, both in adult life and during development, stimulate smooth muscle AT1aR expression and promote AngII-induced AAA in female hyperlipidemic mice.
280

Role of high mobility group box-1 in the pro-fibrotic response of human airway smooth muscle cells

Kashani, Hessam Hassanzadeh 02 July 2014 (has links)
Asthma is a chronic disorder highlighted by intermittent airway inflammation and characterized by paroxysmal dyspnea and airway hyperresponsiveness (AHR). A key feature of severe asthma is the development of airway wall remodeling, which is thought to occur through repeated rounds of inflammation and tissue repair. Remodeling includes structural changes such as increased mass of airway smooth muscle (ASM), and excessive collagen deposition. ASM cells contribute to airway remodeling via the expression and secretion of extracellular matrix (ECM) proteins. This is particularly driven by inflammatory processes, which include mediators such as transforming growth factor (TGF)-β1 and damage associated molecular pattern (DAMP) proteins, such as high mobility group box 1 (HMGB1). HMGB1 is ubiquitously expressed as a non-histone DNA-binding protein that can regulate gene expression, but can also be released in response to stress to underpin inflammation and tissue repair. In this study we tested the hypothesis that extracellular HMGB1 induces signaling pathways that control responses linked to progression of airway inflammation, remodeling and hyperresponsiveness in human ASM cells. We used primary cultured ASM cells as well as hTERT-immortalized human ASM cells. With immunoblotting we demonstrate that exogenous HMGB1 (10 ng/mL) can induce rapid and sustained phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK) that is comparable to that induced by a potent mitogen, platelet derived growth factor (PDGF-BB, 10 ng/mL). We also found that TGF-β1 (2.5 ng/mL) promotes the accumulation of secreted HMGB1 in culture medium in a time line concomitant with expression of ECM proteins, collagen and fibronectin, suggesting a role for HMGB1 in pro-fibrotic effects of TGF-β1. By lentiviral delivery, we induced stable expression of short hairpin RNA (shRNA) that silenced expression of endogenous HMGB1 or mammalian diaphanous 1 (mDia1), a cytoplasmic scaffold protein that is required for HMGB1-induced cell responses through one of its receptors, receptor for advanced glycation end products (RAGE). Immunoblot analyses revealed that silencing of mDia1 was associated with markedly decreased induction of p42/p44 MAPK phosphorylation by exogenous HMGB1. In HMGB1-silenced human ASM cells, we observed significantly reduced synthesis and secretion of collagen A1 and fibronectin in response to TGF-β1 (2.5 ng/mL, 0-48 hrs). However, exogenous HMGB1 was not sufficient to rescue ECM synthesis in response to TGF-β1 in HMGB1-silenced cells - this suggests that intracellular, but not necessarily secreted HMGB1, regulates ECM expression and secretion in response to TGF-β1. Consistent with this interpretation, exogenous HMGB1 alone was not sufficient to induce ECM synthesis or secretion in primary cultured ASM cells. In conclusion, we show that though in human ASM cells extracellular HMGB1 alone can activate MAPK signaling, likely via mDia1-dependent pathways involving RAGE. it is not capable of prompting ECM protein expression. Recombinanat exogenous HMGB1 does not appear to directly affect ECM synthesis, rather intracellular (nuclear) HMGB1 likely modulates activity of genes that are affected by TGF-β1. Overall, HMGB1 has potential to regulate tissue repair processes involving ASM through intracellular and extracellular mechanisms, thus our findings support further work to elucidate the role of HMGB1 in pathogenesis of obstructive airway disease.

Page generated in 0.0403 seconds