• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • Tagged with
  • 19
  • 19
  • 19
  • 19
  • 12
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation numérique en dynamique rapide à l’aide de la méthode SPH (Smoothed Particle Hydrodynamics). : Application à la biomécanique de l’impact / Numerical simulation of high speed dynamic problems using Smoothed Particle Hydrodynamics (SPH) method. : Application to the biomechanics of impact

Taddei, Lorenzo 23 November 2017 (has links)
Dans le cadre de la simulation numérique portant sur la prédiction de phénomènes complexes, la modélisation de la pénétration d’un corps à travers un solide reste un challenge. Ceci est d’autant plus vrai si le corps impacté comporte une épaisseur importante devant les dimensions du projectile. Notamment, dans le contexte de la biomécanique des chocs, l’investigation des traumatismes suite à une blessure par balle, par un moyen numérique, nécessite la modélisation d’une zone pouvant être de plusieurs dizaines de fois supérieure aux dimensions du projectile sur un temps extrêmement court (de l’ordre de quelques dixièmes de milli-seconde). Les méthodes numériques dites classiques comme les éléments finis sont limitées dans ce domaine, dû en particulier à des problèmes de distorsions de maillage. Ce travail de thèse tente donc d’apporter une contribution dans le cadre de la modélisation des impacts pénétrants en proposant l'utilisation d’une méthode alternative sans maillage, la méthode "Smoothed Particle Hydrodynamics" (SPH).Méthode "Smoothed Particle Hydrodynamics, Impact Pénétrant, Biomécanique, Dynamique Rapide, Axisymétrie / Numerical simulation offers the possibility to investigate complexe phenomenons by giving access to useful informations about the evolution of a material system under constraints. Nevertheless, there are some situations where classical procedures, such as the Finite Elements Method (FEM), suffers from issues (e.g. mesh distorsions). One of these situations comes from a biomechanical context, where the investigation tends to observe the penetration of a projectile through human soft tissus. In this context, the objective of this Ph.D Thesis is to evaluate the capability of one alternative method, named Smoothed Particle Hydrodynamics method (SPH), to handle such modelling configurations.Smoothed Particle Hydrodynamics method, Penetrating Impact, Biomechanics, Fast Dynamics, Axis-symmetry
12

SPH Simulation of Fluid-Structure Interaction Problems with Application to Hovercraft

Yang, Qing 02 May 2012 (has links)
A Computational Fluid Dynamics (CFD) tool is developed in this thesis to solve complex fluid-structure interaction (FSI) problems. The fluid domain is based on Smoothed Particle Hydro-dynamics (SPH) and the structural domain employs large-deformation Finite Element Method (FEM). Validation tests of SPH and FEM are first performed individually. A loosely-coupled SPH-FEM model is then proposed for solving FSI problems. Validation results of two benchmark FSI problems are illustrated (Antoci et al., 2007; Souto-Iglesias et al., 2008). The first test case is flow in a sloshing tank interacting with an elastic body and the second one is dam-break flow through an elastic gate. The results obtained with the SPH-FEM model show good agreement with published results and suggest that the SPH-FEM model is a viable and effective numerical tool for FSI problems. This research is then applied to simulate a two-dimensional free-stream flow interacting with a deformable, pressurized surface, such as an ACV/SES bow seal. The dynamics of deformable surfaces such as the skirt/seal systems of the ACV/SES utilize the large-deformation FEM model. The fluid part including the air inside the chamber and water are simulated by SPH. A validation case is performed to investigate the application of SPH-FEM model in ACV/SES via comparison with experimental data (Zalek and Doctors, 2010). The thesis provides the theory of the SPH and FEM models incorporated and the derivation of the loosely-coupled SPH-FEM model. The validation results have suggested that this SPH-FEM model can be readily applied to skirt/seal dynamics of ACV/SES interacting with free-surface flow. / Ph. D.
13

Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões / Simulation of incompressible flows employing the Smoothed Particle Hydrodynamics method using iterative methods to determine the pressure field

Mayksoel Medeiros de Freitas 25 March 2013 (has links)
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas. / In this work, we have developed a numerical simulator (C/C++) to solve incompressible Newtonian fluid flows, based on the meshfree Lagrangian Smoothed Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to determine the pressure field to ensure the incompressibility of the fluid flow. The first is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in which an equation of state for a quasi-incompressible fluid is used to determine the pressure field. The second employs the Projection Method and the pressure field is obtained by solving a Poissons equation. In the study developed here, we have proposed three iterative methods based on the Projection Method to calculate the pressure field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to validate the iterative methods and the computational code we have simulated two one-dimensional problems: the Couette flow between two infinite parallel flat plates and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost particles have been used. A two-dimensional problem, the lid-driven cavity flow, has also been considered. In solving this problem we have used a periodic repositioning technique and ghost particles.
14

Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões / Simulation of incompressible flows employing the Smoothed Particle Hydrodynamics method using iterative methods to determine the pressure field

Mayksoel Medeiros de Freitas 25 March 2013 (has links)
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas. / In this work, we have developed a numerical simulator (C/C++) to solve incompressible Newtonian fluid flows, based on the meshfree Lagrangian Smoothed Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to determine the pressure field to ensure the incompressibility of the fluid flow. The first is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in which an equation of state for a quasi-incompressible fluid is used to determine the pressure field. The second employs the Projection Method and the pressure field is obtained by solving a Poissons equation. In the study developed here, we have proposed three iterative methods based on the Projection Method to calculate the pressure field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to validate the iterative methods and the computational code we have simulated two one-dimensional problems: the Couette flow between two infinite parallel flat plates and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost particles have been used. A two-dimensional problem, the lid-driven cavity flow, has also been considered. In solving this problem we have used a periodic repositioning technique and ghost particles.
15

Uma formulação implícita para o método Smoothed Particle Hydrodynamics / An implicit formulation for the Smoothed Particle Hydrodynamics Method

Ricardo Dias dos Santos 17 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH. / In a wide range of physical problems governed by differential equations, it is often of interest to obtain solutions for the unsteady state and therefore it must be employed temporal integration techniques. One possibility could be the use of an explicit methods due to its simplicity and computational efficiency. However, these methods are often only conditionally stable and are subject to severe restrictions for the time step choice. For advective problems governed by hyperbolic equations, this restriction is known as the Courant-Friedrichs-Lewy (CFL) condition. When there is the need to obtain numerical solutions for long periods of time, or when the computational cost for each time step is high, this condition becomes a handicap. In order to overcome this restriction implicit methods can be used, which are generally unconditionally stable. In this study, some implicit formulations for time integration are used in the Smoothed Particle Hydrodynamics (SPH) method to enable the use of larger time increments and obtain a strong stability in the time evolution process. Due to the high computational cost required by the particles tracking at each time step, the implementation will be feasible only if efficient algorithms were applied for this type of matrix structure such as Krylov subspace methods. Therefore, we carried out a study for the appropriate choice of methods best suited to this problem, and the methods chosen were the Bi-Conjugate Gradient (BiCG), the Bi-Conjugate Gradient Stabilized (BiCGSTAB) and the Quasi-Minimal Residual(QMR). Some test problems were used to validate the numerical solutions obtained with the implicit version of the SPH method.
16

Uma formulação implícita para o método Smoothed Particle Hydrodynamics / An implicit formulation for the Smoothed Particle Hydrodynamics Method

Ricardo Dias dos Santos 17 February 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH. / In a wide range of physical problems governed by differential equations, it is often of interest to obtain solutions for the unsteady state and therefore it must be employed temporal integration techniques. One possibility could be the use of an explicit methods due to its simplicity and computational efficiency. However, these methods are often only conditionally stable and are subject to severe restrictions for the time step choice. For advective problems governed by hyperbolic equations, this restriction is known as the Courant-Friedrichs-Lewy (CFL) condition. When there is the need to obtain numerical solutions for long periods of time, or when the computational cost for each time step is high, this condition becomes a handicap. In order to overcome this restriction implicit methods can be used, which are generally unconditionally stable. In this study, some implicit formulations for time integration are used in the Smoothed Particle Hydrodynamics (SPH) method to enable the use of larger time increments and obtain a strong stability in the time evolution process. Due to the high computational cost required by the particles tracking at each time step, the implementation will be feasible only if efficient algorithms were applied for this type of matrix structure such as Krylov subspace methods. Therefore, we carried out a study for the appropriate choice of methods best suited to this problem, and the methods chosen were the Bi-Conjugate Gradient (BiCG), the Bi-Conjugate Gradient Stabilized (BiCGSTAB) and the Quasi-Minimal Residual(QMR). Some test problems were used to validate the numerical solutions obtained with the implicit version of the SPH method.
17

Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

Kéou Noutcheuwa, Rodrigue Giselin 12 1900 (has links)
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume. / In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.
18

Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

Kéou Noutcheuwa, Rodrigue Giselin 12 1900 (has links)
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume. / In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.
19

Méthode SPH implicite d’ordre 2 appliquée à des fluides incompressibles munis d’une frontière libre

Rioux-Lavoie, Damien 05 1900 (has links)
L’objectif de ce mémoire est d’introduire une nouvelle méthode smoothed particle hydrodynamics (SPH) implicite purement lagrangienne, pour la résolution des équations de Navier- Stokes incompressibles bidimensionnelles en présence d’une surface libre. Notre schéma de discrétisation est basé sur celui de Kéou Noutcheuwa et Owens [19]. Nous avons traité la surface libre en combinant la méthode multiple boundary tangent (MBT) de Yildiz et al. [43] et les conditions aux limites sur les champs auxiliaires de Yang et Prosperetti [42]. Ce faisant, nous obtenons un schéma de discrétisation d’ordre $\mathcal{O}(\Delta t ^2)$ et $\mathcal{O}(\Delta x ^2)$, selon certaines contraintes sur la longueur de lissage $h$. Dans un premier temps, nous avons testé notre schéma avec un écoulement de Poiseuille bidimensionnel à l’aide duquel nous analysons l’erreur de discrétisation de la méthode SPH. Ensuite, nous avons tenté de simuler un problème d’extrusion newtonien bidimensionnel. Malheureusement, bien que le comportement de la surface libre soit satisfaisant, nous avons rencontré des problèmes numériques sur la singularité à la sortie du moule. / The objective of this thesis is to introduce a new implicit purely lagrangian smoothed particle hydrodynamics (SPH) method, for the resolution of the two-dimensional incompressible Navier-Stokes equations in the presence of a free surface. Our discretization scheme is based on that of Kéou Noutcheuwa et Owens [19]. We have treated the free surface by combining Yildiz et al. [43] multiple boundary tangent (MBT) method and boundary conditions on the auxiliary fields of Yang et Prosperetti [42]. In this way, we obtain a discretization scheme of order $\mathcal{O}(\Delta t ^2)$ and $\mathcal{O}(\Delta x ^2)$, according to certain constraints on the smoothing length $h$. First, we tested our scheme with a two-dimensional Poiseuille flow by means of which we analyze the discretization error of the SPH method. Then, we tried to simulate a two-dimensional Newtonian extrusion problem. Unfortunately, although the behavior of the free surface is satisfactory, we have encountered numerical problems on the singularity at the output of the die.

Page generated in 0.1443 seconds