Spelling suggestions: "subject:"codium channels"" "subject:"codium ehannels""
31 |
Electrophysiological and Pharmacological Properties of the Neuronal Voltage-gated Sodium Channel Subtype Nav1.7Sheets, Patrick L. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Voltage-gated sodium channels (VGSCs) are transmembrane proteins responsible for the initiation of action potentials in excitable tissues by selectively allowing Na+ to flow through the cell membrane. VGSC subtype Nav1.7 is highly expressed in nociceptive (pain-sensing) neurons. It has recently been shown that individuals lacking the Nav1.7 subtype do not experience pain but otherwise function normally. In addition, dysfunction of Nav1.7 caused by point mutations in the channel is involved in two inherited pain disorders, primary erythromelalgia (PE) and paroxysmal extreme pain disorder (PEPD). This indicates Nav1.7 is a very important component in nociception. The aims of this dissertation were to 1) investigate if the antipsychotic drug, trifluoperazine (TFP), could modulate Nav1.7 current; 2) examine changes in Nav1.7 properties produced by the PE mutation N395K including sensitivity to the local anesthetic (LA), lidocaine; and 3) determine how different inactivated conformations of Nav1.7 affect lidocaine inhibition on the channel using PEPD mutations (I1461T and T1464I) that alter transitions between the different inactivated configurations of Nav1.7. Standard whole-cell electrophysiology was used to determine electrophysiological and pharmacological changes in WT and mutant sodium currents. Results from this dissertation demonstrate 1) TFP inhibits Nav1.7 channels through the LA interaction site; 2) the N395K mutation alters electrophysiological properties of Nav1.7 and decreases channel sensitivity to the local anesthetic lidocaine; and 3) lidocaine stabilizes Nav1.7 in a configuration that decreases transition to the slow inactivated state of the channel. Overall, this dissertation answers important questions regarding the pharmacology of Nav1.7 and provides insight into the changes in Nav1.7 channel properties caused by point mutations that may contribute to abnormal pain sensations. The results of this dissertation on the function and pharmacology of the Nav1.7 channel are crucial to the understanding of pain pathophysiology and will provide insight for the advancement of pain management therapies.
|
32 |
Nav1.1 and Nav1.6: electrophysiological properties, epilepsy-associated mutations and therapeutic targetsPatel, Reesha Rajni 25 May 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Voltage-‐gated sodium channels (VGSCs) are critical for the initiation and propagation of electrical signals in neurons; consequently they are significant regulators of neuronal excitability. They are exquisitely tuned and aberrations in their activity can lead to pathophysiological conditions. This dissertation highlights the roles of two prominent brain isoforms of VGSCs, Nav1.1 and Nav1.6. These isoforms have distinct localization in the brain. Specifically, Nav1.1 is predominantly expressed in the soma and proximal axon initial segment (AIS) of GABAergic neurons, while Nav1.6 is found at the distal AIS and nodes of Ranvier of both GABAergic and excitatory neurons. Several mutations have been identified in Nav1.1 and recently mutations in Nav1.6 have been discovered in patients with distinct epileptic phenotypes that respond poorly to current anti-epileptics. There is a need to better understand mechanistically how mutations in these channel isoforms lead to epilepsy in order to identify more efficacious treatment strategies. Therefore, the aims of this dissertation were to 1) examine the differential biophysical properties of Nav1.1 and Nav1.6, 2) determine the biophysical consequences of epilepsy-associated mutations in Nav1.1 and Nav1.6 and examine the effects of cannabinoids on wildtype and mutant channel activity and 3) test the effects of selective inhibition of Nav1.1 versus Nav1.6 on epileptiform activity. To address these aims, whole‐cell electrophysiology and mutlielectrode array recordings were used. The results demonstrate that 1) Nav1.1 and Nav1.6 have important differences in their biophysical properties that may be important in the fine‐tuning of neuronal excitability, 2) epilepsy-‐associated mutations in Nav1.1 and Nav1.6 alter several biophysical properties of the channels but have differential effects on resurgent current generation suggesting a divergence in the mechanism by which they induce epileptogenesis and cannabidiol can inhibit aberrant channel activity and reduce neuronal excitability and 3) pharmacological inhibition of Nav1.6, but not Nav1.1, abolishes epileptiform activity. Overall, this dissertation provides insight into the distinct contributions of Nav1.1 and Nav1.6 to physiological and pathophysiological firing activity and their ability to be targeted for therapeutic purposes. This knowledge is critical for understanding the potential role of VGSCs in epilepsy syndromes and identifying possible drug targets for more efficacious treatment strategies.
|
33 |
THE ROLE OF β4 SUBUNIT IN EPILEPSY SUSCEPTIBILITYAhmed Fahim (18989990) 03 September 2024 (has links)
<p dir="ltr">Seizure involves a sudden, uncontrolled electrical disturbance of the brain due to many different causes apart from epilepsy, for example, high fever, low level of blood sugar, alcohol withdrawal, and many more, including the infections in the brain. In fact, epilepsy is a group of chronic neurological disorders characterized by recurrent unprovoked sudden-onset seizures. It stands as one of the prevalent brain disorders globally, impacting over 70 million individuals. The origins of epilepsy are multifaceted, coming from a mix of genetic and environmental factors including genetic predispositions, brain-related conditions (like tumors or strokes), infectious diseases, and traumatic brain injuries. Seizures can be partly referred to the dysregulation of ion channels, including voltage-gated sodium channels which will impact the action potential (electrical impulses that are responsible for the communication that takes place between neurons in the brain). These voltage-gated sodium channels mediate the depolarization responsible for the generation and conduction of action potentials. They are crucial in the generation and continuous electrical signals of the tissues that respond rapidly, like the neurons, and thus forming part of their function. In epilepsy, therefore, it is relevant to that domain in which abnormal functions of these sodium channels come up. Any change or dysfunction of these channels affect the excitability of the neurons themselves, with the consequence that an increased probability occurs in which abnormal electrical activity can be generated, hence the convulsions. Voltage-gated sodium channels are made up of large transmembrane proteins, having a single alpha subunit and related beta subunits. The beta subunit is an auxiliary protein that modulates channel gating, kinetics, surface expression, and the unique resurgent current, thereby influencing neuronal excitability and signaling. Resurgent currents represent a kind of current that can develop during action potential repolarization. They are characterized by a resurgent sodium current, the current which follows the initial sodium inflow in depolarization. Resurgent sodium currents are characterized by a rebound increase in sodium current during the repolarization phase of the action potential. Unlike the classic transient sodium current that inactivates rapidly upon membrane depolarization, the resurgent current is facilitated by the partial block and unblock of the sodium 17 channel pore by the β subunit or other intracellular molecules during the repolarization phase. This allows sodium ions to flow into the cell when this blockage removed before it goes to closed state. It is believed widely to be of keen importance in neuronal excitability. The role of resurgent currents in epilepsy is likely genetically influenced with some environmental influence. Genetic mutations and dysregulation of the gene code for voltage-gated sodium channels, especially those related to beta subunits, can be linked to some atypical resurgent current. This increases the chance of having a seizure, which could develop into epilepsy. Four beta subunits have been identified up to now. As such, my investigation will focus on the beta 4 subunit and its possible involvement in increased susceptibility to seizures. My study will involve a genetically modified mouse β4 knockout (K.O) of the voltage-gated sodium channel, which will be compared with a wild type (WT) mouse model. To facilitate this comparison, I will prepare cortical brain slices from both the genetically modified and WT mice using a (Leica VT1200s vibratome). These slices will then be analyzed with multi-electrode arrays to detect electrical activity and measure the neurons' electrical responses. Additionally, I use 4- Aminopyridine, a potassium channel blocker, to stimulate electrical activity in the neurons and brain slices. Using the methodology outlined above, I aimed to investigate the ability to induce and measure neuronal activity in the β4 K.O mouse model. This involved comparing the neuronal activity between the β4 K.O and WT mice in terms of frequency and amplitude. The analysis of the recorded data was performed using Spike2 software, in conjunction with the multi-electrode array recordings. Furthermore, I explored whether variations in temperature (body temp vs 40℃) affect neuronal activity differently in β4 K.O compared to WT mice. In conclusion, my observations revealed that neuronal activity could indeed be induced in the β4 K.O mice, with a noted decrease in the frequency of this activity compared to WT mice, but an increase in amplitude. These outcomes were consistent at both normal body temperature and at an elevated temperature of 40°C, as analyzed using Spike2 software. However, when conducting a statistical analysis using a two-way ANOVA to compare between the β4 K.O and WT mice, and between body temperature and 40°C conditions, no significant differences were observed. Despite this, it is a general observation and conclusion that β4 K.O mice exhibit altered neuronal activity 18 compared to WT mice. To gain a deeper understanding of the role of the β4 subunit on the alpha subunit of the voltage-gated sodium channel, adopting alternative methods such as patch clamp techniques or in vivo studies with intracranial electrodes may be beneficial. This suggestion comes considering various challenges and limitations encountered during my study, such as maintaining the viability of the slices for extended periods and minimizing noise in multi-electrode array (MEA) recordings. Mutations of β-subunit-encoding genes have been associated with such a wide array of debilitating diseases that include epilepsy, cancer, neuropathic pain, and febrile seizures, to some of the most prevalent conditions in neurodegeneration. Further study will be needed to better understand the biology of these important proteins and their potential for use as new targets for several disease states. Even so, the role of β4 remains somewhat controversial.</p>
|
34 |
Complex management of a patient with refractory primary erythromelalgia lacking a SCN9A mutationLow, Sarah, Robbins, Wendye, Tawfik, Vivianne 04 1900 (has links)
A 41-year-old woman presented with burning and erythema in her extremities triggered by warmth and activity, which was relieved by applying ice. Extensive workup was consistent with adult-onset primary erythromelalgia (EM). Several pharmacological treatments were tried including local anesthetics, capsaicin, ziconotide, and dantrolene, all providing 24-48 hours of relief followed by symptom flare. Interventional therapies, including peripheral and sympathetic ganglion blocks, also failed. Thus far, clonidine and ketamine have been the only effective agents for our patient. Genetic testing was negative for an EM-associated mutation in the SCN9A gene, encoding the Na(V)1.7 sodium channel, suggesting a mutation in an alternate gene.
|
35 |
Mechanisms by which COMMD1 down-regulates Epithelial Sodium Channel (ENaC) activityKe, Ying, n/a January 2008 (has links)
The epithelial sodium channel (ENaC) made up of α, β and γ subunits is located at the apical membrane of polarised epithelia and mediates transport of sodium ions into the cells. Tight control of ENaC function is essential for maintaining sodium homeostasis, blood volume and blood pressure. Controlling the number of active channels present at the cell surface appears to be critically important in regulating ENaC activity. The neural precursor cell expressed developmentally down-regulated gene 4 (Nedd4) family of proteins (eg. Nedd4-2) ubiquitinate ENaC and decrease its cell surface expression. The activity of Nedd4-2 is modulated by serum and glucocorticoid-induced kinase (SGK), which phosphorylates Nedd4-2 and increases cell surface expression of ENaC.
The c̲o̲pper m̲etabolism gene M̲URR1 d̲omain 1 (COMMD1) protein is a recently identified ENaC binding partner and negative regulator of channel activity. Studies by other groups suggest that COMMD1 is also involved in the processes of intracellular protein trafficking and ubiquitin-dependent protein degradation. The aims of this study were 1). To characterise the interactions between COMMD1 and ENaC. 2). To identify the mechanism(s) by which COMMD1 down-regulates ENaC activity.
Here protein-protein interaction studies were used to show that a recently identified conserved C-terminal domain (the COMM domain) in COMMD1 is essential for its binding to ENaC. The binding site for COMMD1 in βENaC was found to be located in its N-terminal domain. COMMD1 was shown to down-regulate ENaC by increasing ubiquitin modification of ENaC and by decreasing the cell surface population. COMMD1 was found to interact with SGK and formed a complex with SGK and Nedd4-2. Ussing chamber studies of Na⁺ transport showed that COMMD1 attenuated the stimulation of ENaC by SGK and abolished insulin-stimulated ENaC current in epithelial cells. Conversely, knock-down of COMMD1 increased ENaC current in mammalian epithelial cells. These data suggest that COMMD1 plays a role in regulating ENaC activity in epithelial cells and its effect is likely mediated via SGK.
In addition COMMD1 was found to bind to the adaptor protein subunit [mu]2. Mutations in COMMD1 that disrupt its interaction with [mu]2 impair its ability to decrease cell surface expression of ENaC in Cos-7 cells, therefore COMMD1 may also have a role in the endocytosis of ENaC by linking cell surface ENaC to the clathrin-dependent endocytosis machinery.
In summary, this study investigated the interactions between COMMD1 and ENaC and identified that the SGK/Nedd4-2 pathway is involved in the COMMD1-mediated ubiquitination and down-regulation of ENaC activity.
|
36 |
Role of Sialylation in the Nervous System Development of Drosophila melanogasterRepnikova, Elena Aleksandrovna 2009 August 1900 (has links)
The sialyltransferase family is a group of enzymes that transfer sialic acid from donor CMP-Neu5Ac onto suitable carbohydrate chains of glycoproteins and glycolipids. In vertebrates, sialylation is implicated in many physiological and pathobiological processes, including nervous and immune system development and functioning, pathogen-host interaction, cancer cell proliferation and apoptosis. However, the complexity of the sialylation pathway and limitation of genetic and in vivo approaches interferes with functional analyses in mammalian organisms. We use Drosophila because of its simplified physiology and reduced genetic redundancy to characterize the evolutionarily conserved function of sialylation and to reveal its relationship to the role of sialic acids in humans. This dissertation focuses primarily on Drosophila sialyltransferase, DSIAT, so far the only sialyltransferase described in protostomes.
Gene targeting of the DSIAT endogenous locus with a DSIAT-HA tagged version uncovered its remarkably dynamic stage- and cell-specific expression. I found that the expression of DSIAT is developmentally regulated and is restricted to motor neurons and cholinergic interneurons within the central nervous system of Drosophila. To reveal the role of DSIAT in development and functioning of fly nervous system I performed characterization of neurological phenotypes of DSIAT knockout flies, also generated by gene targeting approach. I observed that DSIAT mutant larvae are sluggish and have abnormal neuromuscular junction (NMJ) morphology. Electrophysiological analysis of mutant larval NMJ showed altered evoked NMJ activity. It was also observed that DSIAT knockout adult flies are paralyzed when are exposed to higher temperatures. Longevity assays showed that DSIAT adult mutants have significantly reduced life span. I used genetic interaction analysis to identify possible sialylated targets in Drosophila and found that ?-subunit of voltage gated sodium channel is a potential sialylated protein in the fly nervous system.
All these data strongly supports the hypothesis that DSIAT plays an important role for neural transmission and development in Drosophila. This research work establishes Drosophila as a useful model system to study sialylation which may shed light on related biological functions in higher organisms including humans.
|
37 |
Expression spannungsabhängiger Hirntyp-Natriumkanäle im sich entwickelnden Myokard der Ratte / Differential expression of brain-type voltage gated sodium channels in the developing rat myocardiumAlflen, Christian Thomas 06 November 2013 (has links)
No description available.
|
38 |
Epilepsy Mutations in Different Regions of the Nav1.2 Channel Cause Distinct Biophysical EffectsMason, Emily R. 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While most cases of epilepsy respond well to common antiepileptic drugs, many genetically-driven epilepsies are refractory to conventional antiepileptic drugs. Over 250 mutations in the Nav1.2 gene (SCN2A) have been implicated in otherwise idiopathic cases of epilepsy, many of which are refractory to traditional antiepileptic drugs. Few of these mutations have been studied in vitro to determine their biophysical effects on the channels, which could reveal why the effects of some are refractory to traditional antiepileptic drugs. The goal of this dissertation was to characterize multiple epilepsy mutations in the SCN2A gene, which I hypothesized would have distinct biophysical effects on the channel’s function. I used patch-clamp electrophysiology to determine the biophysical effects of three SCN2A epilepsy mutations (R1882Q, R853Q, and L835F). Wild-type (WT) or mutant human SCN2A cDNAs were expressed in human embryonic kidney (HEK) cells and subjected to a panel of electrophysiological assays. I predicted that the net effect of each of these mutations was enhancement of channel function; my results regarding the L835F and R1882Q mutations supported this hypothesis. Both mutations enhance persistent current, and R1882Q also impairs fast inactivation. However, examination of the same parameters for the R853Q mutation suggested a decrease of channel function. I hypothesized that the R853Q mutation creates a gating pore in the channel structure through which sodium leaks into the cell when the channel is in its resting conformation. This hypothesis was supported by electrophysiological data from Xenopus oocytes, which showed a significant voltage-dependent leak current at negative potentials when they expressed the R853Q mutant channels. This was absent in oocytes expressing WT channels. Overall, these results suggest that individual mutations in the SCN2A gene generate epilepsy via distinct biophysical effects that may require novel and/or tailored pharmacotherapies for effective management.
|
39 |
USE OF HUMAN IPSC-DERIVED NEURON MODEL TO STUDY SCN2A GENETIC VARIANT L1342PZhefu Que (14103123) 16 November 2022 (has links)
<p>Epilepsies are the results of abnormal brain hyperactivities caused by brain injury, drug intoxication, and genetic perturbations. In the group of genetic-related epilepsies, the ion channel mutations contribute 25% of total epilepsy cases. Many studies suggest some forms of severe epilepsies can start early in patients’ lives, with epilepsy starting during infancy and childhood. With the wide adoption of genomic sequencing in children having seizures, an increasing number of <em>SCN2A</em> genetic variants have been revealed as genetic causes of epilepsy. Voltage-gated sodium channel Nav1.2, encoded by gene SCN2A, is predominantly expressed in the pyramidal excitatory neurons and supports action potential (AP) firing. One recurrent SCN2A genetic variant is L1342P, which was identified in multiple patients with epileptic encephalopathy and intractable seizures. However, the mechanism underlying L1342P-mediated seizures and the pharmacogenetics of this variant in human neurons remain unknown. To probe the potential hypothesized biophysical property changes, we used a heterologous expression system expressing the Nav1.2-L1342P. We observed prominent but quite complex gating kinetics without significant changes in window current. To understand the core phenotypes of the L1342P variant in human neurons, we took advantage of a reference human-induced pluripotent stem cell (hiPSC) line from a male donor, in which L1342P was introduced by CRISPR/Cas9-mediated genome editing. Using patch-clamping and microelectrode array (MEA) recordings, we revealed that cortical neurons derived from hiPSCs carrying heterozygous L1342P variant have significantly increased intrinsic excitability, higher sodium current density, and enhanced bursting and synchronous network firing, suggesting hyperexcitability phenotypes. Interestingly, L1342P neuronal culture displayed a degree of resistance to the anticonvulsant medication phenytoin, which recapitulated aspects of clinical observation of patients carrying the L1342P variant. In contrast, phrixotoxin-3 (PTx3), a compound showing greater specificity on Nav1.2 over other sodium channel subtypes, can potently alleviate spontaneous and chemically induced hyperexcitability of neurons carrying the L1342P variant. Our results reveal a possible pathogenic underpinning of Nav1.2-L1342P mediated epileptic seizures and demonstrate the utility of genome-edited hiPSCs as an in vitro platform to advance personalized phenotyping and drug discovery.</p>
|
40 |
Transients in Branching Multipolar Neurons With Tapering Dendrites and Sodium ChannelsGlenn, L. Lee, Knisley, Jeff 29 March 2005 (has links)
Book Summary: Computational models of neural networks have proven insufficient to accurately model brain function, mainly as a result of simplifications that ignore the physical reality of neuronal structure in favor of mathematically tractable algorithms and rules. Even the more biologically based "integrate and fire" and "compartmental" styles of modeling suffer from oversimplification in the former case and excessive discretization in the second. This book introduces an integrative approach to modeling neurons and neuronal circuits that retains the integrity of the biological units at all hierarchical levels.
With contributions from more than 40 renowned experts, Modeling in the Neurosciences, Second Edition is essential for those interested in constructing more structured and integrative models with greater biological insight. Focusing on new mathematical and computer models, techniques, and methods, this book represents a cohesive and comprehensive treatment of various aspects of the neurosciences from the molecular to the network level. Many state-of-the-art examples illustrate how mathematical and computer modeling can contribute to the understanding of mechanisms and systems in the neurosciences. Each chapter also includes suggestions of possible refinements for future modeling in this rapidly changing and expanding field.
This book will benefit and inspire the advanced modeler, and will give the beginner sufficient confidence to model a wide selection of neuronal systems at the molecular, cellular, and network levels.
|
Page generated in 0.0349 seconds