Spelling suggestions: "subject:"solar cells"" "subject:"solar wells""
241 |
Characterisation of beta-FeSi2 fabricated by ion beam assisted depositionMcKinty, Colin N. January 2001 (has links)
beta-FeSi2 has been shown to have a minimum direct band gap of 0.87 eV, which leads to the opportunity of Si based opto-electronics. One of the many applications that beta-FeSi2 has been linked with is solar cells. Its proposed suitability for solar cell applications originates from a large absorption coefficient above the fundamental edge (105 cm-1), predicted solar cell efficiencies as high as 23% and photoelectric properties with a quantum efficiency of 32%. Ion beam assisted deposition represent a technique that is suitable for producing low cost material over large areas, thus making it suitable for solar cell fabrication. The work reported here represents an in-depth optical characterisation of the effects of fabrication and post-fabrication processing on ion beam assisted deposited FeSi layers on Si substrates. Two different sets of substrates have been investigated; the first were deposited with layers of Fe and Si in the ratios between (40%:60%) and (29%:71%), and the second were deposited in stoichiometric ratios (1:2). A range of post-fabrication processes have been investigated, these have included studying the effects of annealing time (10 minutes to 18 hours) and temperature (100°C to 900°C) on the band gap and defects underneath the fundamental absorption edge. A study of the effect of annealing regime on the measurement temperature dependency of the band gap was also completed. The results have shown that annealing temperature has a stronger effect on the band gap rather than annealing time, while both affect the absorption underneath the fundamental edge. Optical evidence for the formation of beta-FeSi2 was found for annealing temperatures as low as 425°C. Increasing the annealing temperature/time also results in structural changes in the material, which are dependent on the as-deposited composition of the FeSi layer. beta-FeSi2/Si(n-type) solar cell devices have been fabricating, showing rectifying I-V characteristics, and a photo-voltage spectral response that indicated two distinct regions; 0.72 eV to 1.1 eV and 1.1 eV and above.
|
242 |
Development and characterisation of graphene ink catalysts for use in dye sensitised solar cellsBaker, Jenny January 2014 (has links)
No description available.
|
243 |
Perovskite solar cellsStenberg, Jonas January 2017 (has links)
Perovskite solar cells (PSC) performance has risen rapidly the last few years with the current record having power conversion efficiency (PCE) of 22.1 %. This has attracted a lot of attention towards this alternative solar cell that can be manufactured with less energy and toxic material than traditional silicon solar cells. The purpose of this thesis is to reproduce high performance PSC from known recipe by Zhang et al. with potential of PCE reaching above 18 %. The thesis covers the theory regarding how a PSC operates, how they are measured and which parameters are important for a high performance PSC. The thesis includes a detailed manuscript on how to manufacture high performance PSC layer by layer and how to characterize the performance of the cells by IV-measurements. Furthermore, it includes scanning electron microscopy (SEM), by which the cells surface layers and cross-section could be evaluated. The result shows that it is possible to reproduce the PSC from literature and achieve a PCE of 18.8 %. However, the cells PCE decrease by 15 % during 2 hours of constant illumination, due to lack of stability. The manufactured PSC was used to power two catalysts that splits water into O2 and H2 and managed to reach a solar to hydrogen conversion efficiency (STHCE) of 13 %.
|
244 |
Fabrication and characterization of CuInSe₂/CdS/ZnO thin film solar cellsChenene, Manuel Luis 20 August 2012 (has links)
M.Sc. / I-III-VI2 compound semiconductors are important photovoltaic (PV) materials with optical and electrical properties that can be tuned for optimum device performance. Recent studies indicated that the efficiencies (1) > 18%) of CuInSe2/CdS/ZnO thin film devices are in good agreement with that of standard silicon cells. In this study, CuInSe 2 absorber films with excellent material properties were produced by relatively simple and reproducible two-stage growth techniques. In these approaches, metallic precursors (Cu/InSe, InSe/Cu, Cu/InSe/Cu and InSe/Cu/InSe) were deposited by thermal evaporation from specially designed graphite heaters at temperatures around 200°C. In the second stage of the process, the alloys were exposed to elemental Se vapour or H2Se/Ar gas. A systematic study was conducted in order to determine optimum growth parameters for the different deposition processes. Optimum material properties (homogeneous and dense films with a high degree of compositional uniformity) were obtained when InSe/Cu/InSe precursors were selenized in elemental Se vapour or H2Se/Ar gas. Comparative studies also indicated that the reaction kinetics is enhanced when H2Se/Ar is used as chalcogen source. Fully selenized films were obtained at temperatures as low as 450°C in a H2Se/Ar atmosphere, compared to temperatures of 600°C in the case of Se vapour. The optical and electrical properties of the absorber layers were accurately controlled by small variations in the bulk composition of the films. A standard CdS/ZnO window layer technology was also developed in our laboratories and preliminary solar cell devices were fabricated and evaluated.
|
245 |
An investigation into the thermo-fluid design and technical feasibility of a practical solar absorption refrigeration cycleSantos, Nelson de Sousa Pedro dos 15 March 2010 (has links)
M.Eng. / The need and problem was originated from the trends of the earths dwindling energy resource. As time progresses humans are becoming more aware of need to use so called “alternative energy sources” to alleviate the main energy converters i.e. power stations. The student was tasked with investigating the thermal performance of a solar powered refrigeration cycle (prototype) that could: produce enough refrigeration effect that it replaces the standard home vapour compression unit, used for cooling or freezing of foods, heats up a geyser sufficiently to have hot water for a common house hold, has excess energy to heat or cool liquid or air based environments and has the potential to lower the electrical bill of a house. The introductory step was to obtain the thermo fluid properties of aqua ammonia solutions. A setback came about when determining the aqua ammonia properties. There were too many conflicting properties being yielded by six different authors. In an attempt to gain confidence in only one author a comparison table was prepared. The table compared the six authors to each other. By looking at all the values compared it brought great clarity to the problem. When continuing the research into the fundamental law approach of solving for the cycle new findings were made. Initially very little comprehensive studies were done which explained in fundamental laws to solve for the absorption cycle. After extensive reviewing of a detailed study on how to solve for absorption refrigeration cycles, then it was able to begin improving on the thermo – fluid design of the cycle. As cycle and component design began to progress the train of thought began to steer in a direction. Each component needed to be detail designed. The advantage of having each component specifically catered for in the cycle design was that it would increase the cycle efficiency. In this way it would ensure that during the concept generation phase the functioning of each component was clear, thereby enabling a clear understanding of how components would compliment each other in a cycle. A mode of solving for the cycle was to endeavour that all parameters could be calculated unambiguously, with the aid of computerisation. Testing was carried out on a real life commercial thermal siphoning machine in order to realistically understand how absorption refrigeration works and gain experience. At the end of the study the most important result is that the dissertation research shows strong evidence that it will be possible to create a device which can fulfil the four tasks listed above. Another result is a program which is a refined cycle design of the pump absorption type refrigeration. The program solves for points along the cycle. Lastly it was found that even though EES was the simpler program to use for aqua ammonia solution properties it was the only program which catered for sub cooling and super heating.
|
246 |
Optimization of quaternary and pentenary chalcopyrite for applications in thin film solar cellsChenene, Manuel Luis 08 November 2011 (has links)
Ph.D. / One of the solutions to the high cost of solar modules is the development of thin film solar cell technologies, which enable material saving, few processing steps, good stability in outdoor testing, high conversion efficiency and flexibility for large area coatings. Polycrystalline CuInSe2 (CIS) thin films and related quaternary and pentenary compounds such as Cu(In,Ga)Se2 (CIGS) and Cu(In,Ga)(Se,S)2 (CIGSS) are the most promising thin film candidates to fulfil the requirements of economically viable solar modules. Presently CIS, CIGS and CIGSS thin film solar cells are prepared mostly by two – stage deposition processes, where Cu-In-Ga alloys are deposited, followed by selenization and/or sulfurization using H2Se/Ar and/or H2S/Ar gases, Se and/or S vapours. Key problems related to this approach are (1) the widely reported compositional change and loss of material during the annealing and selenization stages, and (2) the formation of a graded film structure with most of the Ga residing at the back of the film, due to the difference in the reaction rates between the binary selenides. The present study aims to develop CIGS quaternary and CIGSS pentenary thin film absorbers which are substantially homogeneous and single phase. In order to achieve this aim different deposition processes were developed. This included thermal evaporation of pulverized compound materials from a single crucible with and without subsequent reaction of the precursors in Se vapour or H2Se/Ar atmosphere. Alternatively, controlled partial selenization/sulfurization of the Cu-In-Ga magnetron sputtered precursor films under controlled conditions of reaction time, temperature and gas phase concentration were applied to produce CIGSS films. The latter approach allowed homogeneous incorporation of Ga and S species into CIS compound material, and with that a corresponding increase of band gap of the material in the active region of the solar cell. CIGS quaternary and CIGSS pentenary based solar cells were completed by depositing a CdS buffer layer of around 50 nm thickness, high resistivity ZnO and low resistivity Al – doped ZnO with thicknesses of about 50 nm and 0.5 μm respectively. I-V measurements on fabricated solar cells, under standard A.M. 1.5 conditions, demonstrated good solar cell device quality with efficiencies of about 10 % and 15% respectively.
|
247 |
The copper-bismuth-sulphur material system and thin film deposition of Cu3BiS3 by sputtering and evaporation for the application of photovoltaic cellsMcCracken, R. O. January 2016 (has links)
The semiconducting sulphosalt Wittichenite has been identified as a possible absorber material for thin film photovoltaic devices. It has the chemical formula Cu3BiS3 and its component elements are those of low toxicity and high abundance making it a very attractive prospect for photovoltaic devices. The copper bismuth sulphur material system is not very well understood and information on it limited to a few small regions. To aid understanding of this system a pseudo-binary phase diagram along the CuS-Bi join of the Cu-Bi-S ternary phase diagram was constructed by making bulk samples of various compositions along the join and analysing them using X-ray diffraction and differential scanning calorimetry. This join was chosen because is crosses the point at which Cu3BiS3 would be expected to occur due to its stoichiometry. The CuS-Bi phase diagram shows Cu3BiS3 forms across a wide compositional range but is mixed with either bismuth metal or copper sulphides depending on composition. Films of Cu3BiS3 were made using sputtered copper and bismuth films annealed in a sulphur atmosphere and thermal co- evaporation of copper sulphide and bismuth.
|
248 |
Si/CdTe heterojunction fabricated by closed hot wall systemLau, Yin Ping 01 January 1995 (has links)
No description available.
|
249 |
Characterisation of performance limiting defects in photovoltaic devices using electroluminescence and related techniquesCrozier, Jacqueline Louise January 2015 (has links)
Solar cells allow the energy from the sun to be converted into electrical energy; this makes solar energy an environmentally friendly, sustainable alternative to fossil fuel energy sources. Solar cells are connected together in a photovoltaic (PV) module to provide the higher current, voltage and power outputs necessary for electrical applications. However, the performance of PV modules can limited by the degradation and defects. PV modules can be characterised using various opto-electronic techniques, each providing information about the performance of the module. The current-voltage (I-V) characteristic curve of a module being the most commonly used characterisation technique. The I-V curve is typically measured in outdoor, fully illuminated, conditions. This allows performance parameters such as short circuit current (ISC), open circuit voltage (VOC) and maximum power (PMAX) to be determined. However, it can be difficult to determine the root cause of the performance drop from the I-V curve alone. Electroluminescence (EL) is a module characterisation technique that allows defects and failures in PV modules to be successfully identified. This study investigates the characterisation of solar cells and photovoltaic modules using EL. EL occurs when a solar cell or module is forward biased and the injected electron-hole pairs recombine radiatively. The intensity of the emitted EL is related the applied voltage and the material properties. EL imaging is a useful characterisation technique in identifying module defects and failures. Defects such as micro-cracks, broken contact fingers and fractures are detected in EL images as well as material features such as grain boundaries. The common defects in crystalline silicon are catalogued and the possible causes are discussed. An experimental setup was developed in order to systematically take a high resolution EL image of every cell in the module and record the applied voltage and current. This produces a very detailed, clear, image of each cell with a pixel size in the micrometre range. This process is time consuming to acquire an EL image of an entire module so alternatively a different setup can be used and an EL image of a whole module can be captured in a single frame with an increased pixel size in the millimetre range. For EL imaging a silicon charge-coupled device (CCD) camera was used because it has very good spatial resolution however this sensor is only sensitive to wavelength in the range of 300-1200 nm. There is an overlap in wavelengths from about 900 to 1100 nm allowing the EL emitted from silicon solar cells to be detected. In conjunction with the high-resolution EL system an image processing program was developed to crop, adjust and align the images so only the relevant cell was included. This program also automatically detects certain defects that have a regular shape. Micro-cracks, broken fingers and striation rings are automatically identified. The program has an adjustable sensitivity to identify small or large defects. Defective cells are distinguished from undamaged cells by comparing the binary images to the ideal, undamaged cell. The current-voltage curves and the performance parameters of modules were compared with the EL images in order to discuss and identify power limiting defects. Features that remove significant portions of the cell from electrical contact such as micro-cracks are shown to have a larger effect of the performance of the module. Other features such as broken contact fingers, contact forming failures and striation rings do not significantly lower the performance of the module. Thus an understanding of how different features affect the module performance is important in order to correctly interpret the EL results. The intensity of the luminescence emitted is related to the applied voltage and the quantum efficiency of the cell material. The spectrum of the emitted luminescence was modelled and related to the recombination properties of the cell such as surface recombination velocity and minority carrier diffusion length/lifetime. In this study the emitted spectrum was modelled and the effects of recombination properties of the cell on the emitted spectrum were examined. The spectrum of the detected EL was modelled, dependent on the sensitivity of the camera, the transmission of the filters and the emitted photon flux. The integration of short-pass filters into the experimental setup in order to isolate short-wavelength luminescence was discussed. There is a proportional relationship between the intensity of the emitted EL and the local junction voltage. Resistive losses like series and shunt resistances lower the applied voltage and thus affect the EL image. The voltage dependence was assessed by comparing EL images taken at different applied biases. Analysis of the variation in EL intensity with voltage was successful in determining the origin of certain features in an EL image. Certain defects, those that are related to series resistance or shunting are highly voltage dependent. When a feature has little or no dependence on voltage then the defect could be in the laminate layers and not in the cell material. The results of this study allow for in-depth analysis of the defects found in PV modules using the high resolution EL imaging system and the image processing routine. The development of an image processing routine allows the interpretation of the EL image to be done automatically, resulting in a faster and more efficient process. By understanding the defects visible in the EL image, the test is more meaningful and allows the results to be used to predict module performance and potential failures.
|
250 |
On the characterization of photovoltaic devices for concentrator purposesVorster, Frederick Jacobus January 2007 (has links)
This study originated from an evaluation of the performance of a commercially available high concentration point focus concentrator PV system. The effect of module design flaws was studied by using current-voltage (I-V) curves obtained from each module in the array. The position of reverse bias steps revealed the severity of mismatch in a string of series-connected cells. By understanding the effects of the various types of mismatch, power losses and damage to the solar cells resulting from hot spot formation can be minimized and several recommendations for improving the basic performance of similar systems were made. Concern over the extent and type of defect failure of the concentrator photovoltaic (CPV) cells prompted an investigation into the use of a light beam induced current (LBIC) technique to investigate the spatial distribution of defects. An overview of current and developing LBIC techniques revealed that the original standard LBIC techniques have found widespread application, and that far-reaching and important developments of the technique have taken place over the years. These developments are driven by natural progression as well as the availability of newly developed advanced measurement equipment. Several techniques such as Lock-in hermography and the use of infrared cameras have developed as complementary techniques to advanced LBIC techniques. As an accurate contactless evaluation tool that is able to image spatially distributed defects in cell material, the basis of this method seemed promising for the evaluation of concentrator cells.
|
Page generated in 0.0497 seconds