• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 439
  • 312
  • 61
  • 44
  • 41
  • 30
  • 18
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 8
  • Tagged with
  • 1237
  • 1237
  • 310
  • 263
  • 171
  • 170
  • 148
  • 137
  • 117
  • 101
  • 90
  • 88
  • 81
  • 80
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Solar Development in the Mojave Desert

Swartley, Joseph B 01 January 2010 (has links)
For more than two centuries, humans have been spewing “greenhouse gases” into the atmosphere through the burning of fossil fuels, deforestation, and the development of land, causing the planet’s surface temperature to increase at an accelerated rate. Climate change is one of the most pressing issues that the world is facing today, and in order to combat the effects of climate change, it is necessary to adopt the use of more renewable technology, namely solar energy. The United States' best region for solar development is the Mojave Desert, and many large-scale projects are being built or proposed to be built in the area. However, the deployment of solar technology in the Mojave Desert comes with significant ecological, socioeconomic, and political impacts. This paper is intended to provide an overview of the issues surrounding solar development in the Mojave Desert.
472

Photovoltaic System Layout for Optimized Self-Consumption

Luthander, Rasmus January 2013 (has links)
Most of the photovoltaic (solar cell) systems in Sweden today are installed on private houses and connected to the public grid. Photovoltaic (PV) power can be consumed directly in the house, called self-consumption, or fed in to the public grid. For the house owner self-consumed PV energy often has a higher economic value than sold excess PV energy, since the savings from not buying one kWh is larger than the income of selling one kWh. The self-consumption can be expressed as an absolute value; amount of produced/consumed kWh, or as a relative; absolute self-consumption divided with total PV production. The PV production and self-consumption were calculated on an hourly basis. In this Master thesis a MATLAB tool for calculating and optimizing the production, absolute and relative self-consumption and profit for PV systems with panels in one (1DPV), two or three directions (3DPV) was developed. The results show possibilities to increase especially the relative self-consumption with 3DPV. There is however no economic gain of using 3DPV instead of south-directed 1DPV for the studied case; a private house close to Västerås with a 1DPV system of 3360 W and variable electricity prices based on hourly Nord Pool Spot prices. The rated power of the inverter can be decreased with 3DPV compared to south-oriented 1DPV and still keep minimal production losses. A smaller inverter and other peripheral equipment such as cables might compensate for the lower yearly profit with 3DPV when calculating the payback period. Further studies of economic aspects and how to optimize them have to be carried out for 3DPV systems, since economy is very crucial for investment decisions.
473

Solenergi i småhus

Loui, Nilsson January 2013 (has links)
Mindre än en timmes solsken på vår planet innehåller mer energi än hela världens energiförbrukning på ett helt år. Ett vanligt villatak i Sverige tar på ett år emot flera gånger mer energi än vad dess behov är. Potentialen för solenergi är mycket stor. Samtidigt använder samhället idag stora mängder energi och det mesta av energin kommer från icke-förnyelsebara källor. Sverige har visserligen en hög andel förnyelsebar energi jämfört med andra länder men ändå är mer än hälften av energin som vi använder icke förnyelsebar. Syftet med den här rapporten är att utveckla ett mer hållbart samhälle genom att använda solenergi. Målet har varit att undersöka hur solenergi används i nybyggda villor och hur användningen av solenergi kan öka. Tre huvudfrågor har utarbetats för att kunna nå målet. Hur används solenergi idag? Hur kan användningen av solenergi öka i nyproducerade villor? Hur ser användningen av solceller ut i ett internationellt perspektiv? Dessa frågor besvaras i den här rapporten med hjälp av litteraturstudier och intervjuer. En genomgång av ett stort antal rapporter och böcker om solenergi som skrivits under de senaste fem åren har gjorts. Uppgifter ifrån småhustillverkare och leverantörer har inhämtats genom intervjuer både personliga möten och via telefon. Resultatet visar att solenergi är en hållbar lösning för framtiden men den används i liten utsträckning idag. I Sverige finns det idag 30 000 småhus som har solfångare och mindre än 900st installationer med solceller. Småhustillverkare erbjuder nästan aldrig någon form av solenergi till sina hus och menar också att efterfrågan är dålig. För att kunna öka användningen av solenergi i nyproducerade villor krävs information, statlig styrning och anpassade lösningar. Marknadsföring, nettodebitering, bidrag ifrån staten, hårdare energikrav, dyrare elpriser samt lösningar som är estetiska, driftsäkra och praktiska är också förslag som framkommer i rapporten. Internationellt pågår det en mycket stor ökning av andelen solceller. Vissa länder har uppnått att el ifrån solceller har lägre eller samma pris som konventionella källor till el. I Danmark ökade installationer av solceller från 11MW till 327MW under 2012. Under 2012 installerades det totalt 100 000 MW solceller i hela världen. / Less than one hour's sunshine on our planet contains more energy than the whole world's energy consumption in one year. A common roof for residential dwellings in Sweden receives several times more energy in one year than what its needs are. The potential for solar energy is huge. At the same time the society today uses large amounts of energy and most of the energy comes from non-renewable sources. Sweden does have a high percentage of renewable energy compared to other countries but more than half of the energy we use are non-renewable. The purpose of this report is to obtain a more sustainable society by using solar energy. The goal has been to investigate how solar energy is used in the newly built small houses and how the use of solar energy can increase. Three main issues have been developed in order to achieve the purpose. How is the use of solar energy today? How can solar energy increase in newly constructed homes? How is the use of solar cells in to an international perspective? These questions have been answered in this report using literature reviews and interviews. A review of numerous reports and books on solar energy in the last five years has been done. Data from small houses manufacturers and suppliers have been obtained by interviewing both in personal meetings and by phone. The results show that solar power is a viable solution for the future, but it is used to a small extent today. In Sweden, there are 30,000 single-family homes that have solar panels and less than 900 installations with solar cells. Small houses manufacturers offer almost never any kind of solar energy into their houses and they also says that demand is poor. In order to increase the use of solar energy in small houses, information, government control, and customized solutions are all needs. Marketing, net metering, grants from the state, tougher energy requirements, higher electricity prices, and solutions that are aesthetic, reliable, and practical are also possibilities presented in the report. Internationally, it is a very large increase in the proportion of solar cells. Some countries have reached that electricity from solar cells is lower or the same price as conventional electricity sources. In Denmark, installations of solar cells increased from 11MW to 327MW in 2012. In 2012 it was installed 100,000 MW solar cells worldwide.
474

Development of a model for physical and economical optimization of distributed PV systems

Näsvall, David January 2013 (has links)
There are a number of factors that influence both the physical and the economical performance of a photovoltaic solar energy (PV) installation. The aim of this project was to develop a simulation and optimization model with which these factors could be analyzed and the PV installation optimized. By supplying the model with meteorological data, electricity consumption data and available building surfaces the model finds the optimum PV installation. The output consists of both physical and economical performance as well as information on how to distribute and install the PV modules on the available building surfaces. The model was validated using annual and hourly measurement data from Swedish PV installations. The validation shows that the model is a reliable tool for simulating the electricity generation from a PV system. In the second part of the project the model was used to evaluate the PV potential at two different hospitals and one health care center within the Uppsala County, Sweden. The model was also used to study the effect of different house orientations on the PV potential in Swedish neighborhoods. The physical and economical PV potentials are high for the hospitals and the health carecenter. This is mainly due to a high electricity demand but also due to a good match between the load profile and the PV electricity generation profile. The study on different neighborhoods shows that for gable roof buildings it might be more favorable to plan the houses so that the roofs face east-west rather than north-south. / Det är många faktorer som påverkar de fysikaliska och ekonomiska resultaten av en planerad solcellsinstallation. Syftet med det här projektet var att utveckla en simulerings- och optimeringsmodell med vars hjälp det skulle gå att analysera dessa frågor och hitta det bästa installationsalternativet i varje enskilt fall. Modellen som togs fram i detta projekt kan både studera ett givet installationsalternativ och räkna ut den mest optimala installationen utifrån de av användaren specificerade målen och begränsningarna. För att kunna göra detta behöver modellen förses med meteorologiska data för den aktuella platsen, elkonsumtionsdata från det aktuella objektet samt mått och orienteringar för de tillgängliga byggnadsytorna. Dessutom behöver användaren ange vissa ekonomiska parametrar såsom exempelvis avbetalningstid, ränta och aktuellt solcellspris. Resultatet från modellen består av både fysikaliska och ekonomiska resultat, exempelvis timvis nettoflöde av elektricitet, avbetalningstid och genomsnittligt elpris från solcellssystemet. I optimeringsresultatet redovisas hur solcellerna bör fördelas och installeras på de olika byggnadsytorna för att ge bäst resultat enligt målspecifikationen. För att validera modellen jämfördes dess simuleringsresultat med årliga och timvisa mätvärden från svenska solcellsanläggningar. Dessutom jämfördes modellens resultat med motsvarande resultat från andra simuleringsverktyg för solceller. Valideringsresultaten visar att modellen är ett pålitligt verktyg för att simulera elgenereringen från solcellsystem med olika moduler, växelriktare och installationssätt. Som ett delresultat vid modellutvecklingen simulerades ett stort antal olika solcellssystempå platta och svagt lutande tak. Utifrån dessa simuleringar utformades ett antal tumregler för hur uppvinklade moduler på platta eller svagt lutande tak skall monteras. Tumreglerna visar vilket avstånd mellan modulraderna och vilken vinkel på modulerna som ger den högsta taktäckningsgarden (största installationen) vid olika övre gränser för de interna skuggningsförlusterna. I projektets andra del användes modellen för att utvärdera solcellspotentialen på Akademiska sjukhuset, Enköpings lasarett och Tierps vårdcentral. Resultaten som levererades till Landstinget i Uppsala län visar att både den tekniska och den ekonomiska solcellspotentialen är stor på dessa enheter. Huvudanledning till den höga potentialen är att elbehovet är väldigt stort på dessa enheter samt att solcellernas elgenereringsprofil stämmer mycket väl överens med när elbehovet är som störst. Modellen användes även för att studera hur olika byggnadsorienteringar påverkar solcellspotentialen i olika tänkbara svenska bostadsområden. De olika resultaten från dessa studier visar att det i många fall är bättre att orientera byggnader med sadeltak så att taken pekar i östlig och västlig riktning snarare än mot syd och nord. Därmed föreslås en översyn avde nu rådande rekommendationerna att optimera huvudorienteringarna av taken mod syd vid detaljplanering av stadsdelar.
475

Termisk Vattenpump / Thermal waterpump

Klingberg, Hans, Stendal, Marcus January 2009 (has links)
This degree project aims at developing a concept for how to use solar energy to pump up water. The target audience is people living in areas where the functioning of the electricity and water network is absent. In these areas, the hand-powered water pump is the most common technology. The degree project's goal is to find an economically viable alternative to the time consuming hand-powered water pumps. The power comes from solar energy. Studies have shown that 90% of the hand pumps that have been installed have broken down within the first three years. This is because of an incorrect basic design that severely shortens lifetime. How would a simple and robust design look like? An information seeking phase about the conditions and techniques that exist in these areas, were the basis for the requirements of the concept. Because of this the authors chose a concept similar to a simple steam engine. The pump uses vaporized water, by means of concentrating sunlight to pump up water. In total, 33 different concepts were created. The concepts were filtered in three stages that resulted in a final concept. The final concept contains a reflective dish that concentrates the sunlight to a receiver where the water evaporates. The built up pressure forces up water towards the surface from a tank located below the groundwater. The system is designed to supply 25 families with 2.5 cubic meters of water a day. The pump is working during the daily 8 hours of sunshine. The system will have an expected low efficiency <5.3% which is the theoretical maximum efficiency. Further development of the system requires a detailed analysis of the situation on the ground. Tests should be performed to examine how well the technology works and how sensitive the system is to disturbances.
476

Geometric Optimization of Solar Concentrating Collectors using Quasi-Monte Carlo Simulation

Marston, Andrew James January 2010 (has links)
This thesis is a study of the geometric design of solar concentrating collectors. In this work, a numerical optimization methodology was developed and applied to various problems in linear solar concentrator design, in order to examine overall optimization success as well as the effect of various strategies for improving computational efficiency. Optimization is performed with the goal of identifying the concentrator geometry that results in the greatest fraction of incoming solar radiation absorbed at the receiver surface, for a given collector configuration. Surfaces are parametrically represented in two-dimensions, and objective function evaluations are performed using various Monte Carlo ray-tracing techniques. Design optimization is performed using a gradient-based search scheme, with the gradient approximated through finite-difference estimation and updates based on the direction of steepest-descent. The developed geometric optimization methodology was found to perform with mixed success for the given test problems. In general, in every case a significant improvement in performance was achieved over that of the initial design guess, however, in certain cases, the quality of the identified optimal geometry depended on the quality of the initial guess. It was found that, through the use of randomized quasi-Monte Carlo, instead of traditional Monte Carlo, overall computational time to converge is reduced significantly, with times typically reduced by a factor of four to six for problems assuming perfect optics, and by a factor of about 2.5 for problems assuming realistic optical properties. It was concluded that the application of numerical optimization to the design of solar concentrating collectors merits additional research, especially given the improvements possible through quasi-Monte Carlo techniques.
477

Modelling of a Natural-Gas-Based Clean Energy Hub

Sharif, Abduslam January 2012 (has links)
The increasing price of fuel and energy, combined with environmental laws and regulations, have led many different energy producers to integrate renewable, clean energy sources with non-renewable ones, forming the idea of energy hubs. Energy hubs are systems of technologies where different energy forms are conditioned and transformed. These energy hubs offer many advantages compared to traditional single-energy sources, including increased reliability and security of meeting energy demand, maximizing use of energy and materials resulting in increasing the overall system efficiency. In this thesis, we consider an energy hub consisting of natural gas (NG) turbines for the main source of energy— electricity and heat— combined with two renewable energy sources—wind turbines and PV solar cells. The hub designed capacity is meant to simulate and replace the coal-fired Nanticoke Generating Station with NG-fired power plant. The generating station is integrated with renewable energy sources, including wind and solar. The hub will also include water electrolysers for hydrogen production. The hydrogen serves as an energy storage vector that can be used in transportation applications, or the hydrogen can be mixed into the NG feed stream to the gas turbines to improve their emission profile. Alkaline electrolysers’ technology is fully mature to be applied in large industrial applications. Hydrogen, as an energy carrier, is becoming more and more important in industrial and transportation sectors, so a significant part of the thesis will focus on hydrogen production and cost. In order to achieve the goal of replacing the Nanticoke Coal-fired Power Plant by introducing the energy hub concept, the study investigates the modeling of the combined system of the different technologies used in terms of the total energy produced, cost per kWh, and emissions. This modeling is done using GAMS® in order to make use of the optimization routines in the software. The system is modeled so that a minimum cost of energy is achieved taking into account technical and thermodynamic constrains. Excess energy produced during off-peak demand by wind turbines and PV solar cells is used to feed the electrolyser to produce H2 and O2. Through this method, a significant reduction in energy cost and greenhouse gas (GHG) emissions are achieved, in addition to an increased overall efficiency.
478

Upplevda barriärer för clean technology-företag - Fallstudier om kommersialisering av produkter på en internationell marknad för solenergi

Mihai, Gabriela, Macak, Mattias January 2012 (has links)
Overall aim of this master’s thesis is to describe and identify perceived barriers in Swedish businesses within solar energy field and analyze, based on four theoretical viewpoints, how these barriers can be handled. In other words how can the barriers be overcome or eliminated to better succeed in the commercialization process? The method applied is qualitative in which data has been collected through phone interviews originated from seven Cleantech businesses which operate within solar energy. Furthermore this thesis has a descriptive- and an explorative purpose. Empirical findings have showed that barriers depend upon the company itself, but also the community, academic- and governmental institutions. Some businesses do not have an international point of view, instead they have costs aspects in mind. Priorities seem to be a crucial factor when it comes to commercialization. The Swedish government does not contribute enough support to solar energy sector. There is lack of combination in commercialization and technical aspects within the educational system.
479

How do ecological, economic and social sustainability influence on employee motivation? : A case study of a German company in the solar energy sector

Krenz, Susanne, Torets Ruiz, Patricia Cristina January 2012 (has links)
This research has generated interesting findings from the inductive approach and the qualitative methods that were used in the inquiry process. Thanks to the literature review, the semi-structure interviews, a focus group and secondary data it was possible to obtain the necessary information to answer the research question: How do ecological, economic and social sustainability influence employee motivation? In order to answer this question, two sub-questions were considered first, namely What constitutes sustainability in the company-specific context of Wagner & Co Solartechnik? and Does sustainability motivate people? The answer to the latter question has to be yes, as the analysis revealed numerous linkages. From the data gathered, it is apparent that economic sustainability constitutes the most basic level of sustainability at Wagner Solar. Although the influence of money has its clear limitations, an increase in material orientation could be observed compared to previous. At the company level, ecological sustainability manifests itself as ‘striving for the energy turnaround’. The majority of employees show, as their most important source of motivation, an interest in solar technology as well as a concern for increased eco-efficiency. The information gathered has permitted an assessment of whether the company hires people that are already committed to the company’s vision and mission, or whether the company makes an effort to socialise employees. While this does not seem to be the case it is apparent that the company cultivates a communication and information policy that perpetuates its values. Wagner Solar also exhibits a strong and consistent corporate culture. In terms of social sustainability, democratic decision-making appears to exert the greater amount of influence on employee motivation, while the influence of employee ownership is comparatively diminished. The company appears to both attract and seek out employees who value the ability to work autonomously, partially explained by the German nationality but not exclusively. Positive work environment and good collaborations between colleagues were deemed another important motivational factor, both by the interviewees and the intra-company survey. However, working at Wagner Solar is not without its perceived negatives. These are mostly related to the company’s unique decision-making structures, the use of the language, and possible “island” mentality that some departments might suffer. The study also aimed to analyse the influence of different motivators on employees. When contemplating which pillars of sustainability motivate the most, the analysis of the main motivators revealed that the most important pillar is the social one, since most of the participants have one or more main motivators connected to it. Overall, the impression is that the social values of Wagner Solar are the most pervasive, affecting attitudes and behaviours such as autonomy and responsibility, and, therefore, constitute the main motivators for its employees. The ecological pillar also noticeably influences employee motivation, while the economic pillar is the least influential. / MSPME - Masters in Strategic Project Management European
480

Autonomous water-cleaning machine using solar energy in shrimp ponds / Nghiên cứu, phát triển thiết bị tự hành làm sạch nước trong vuông tôm sử dụng năng lượng mặt trời

Dang, Thien Ngon 14 November 2012 (has links) (PDF)
Limited water exchange shrimp culture technology is commonly used today in many shrimp farms in Vietnam to reduce water usage, input of diseases and discharge of nutrient-rich effluents into environment as well as to increase the production per unit area. However, a remaining problem in this technology is that the water quality in shrimp ponds will be reduced due to limitation of water exchange for a long period. The accumulation of inorganic components such as waste feed, bacterial deposits or other biological debris at the pond bottom will lead to low dissolved oxygen, high ammonia-nitrogen level, high fecal coliform bacteria and high turbidity which cause a severe degradation of water quality and detriment to shrimp growth and survival. To solve this remaining problem, an autonomous water-cleaning machine for shrimp ponds was designed to control the waste accumulation in the pond. This is an effective solution to replace manual cleaning methods for water quality management in shrimp farming in the coastal area of the Mekong delta of Vietnam. Especially, this technique can be used for biosecure shrimp production systems according to GMP standards to meet the objectives for sustainable development of shrimp aquaculture in Vietnam. / Kỹ thuật nuôi tôm không thay nước đang được sử dụng rộng rãi ở các trại nuôi tôm Việt Nam vì giúp giảm lượng nước sử dụng, hạn chế thải nước vào môi trường và giúp tăng diện tích nuôi trồng tôm. Tuy nhiên, bản thân kỹ thuật này cũng tạo nên một sản phẩm chất thải là phân tôm, thức ăn và chế phẩm sinh học xử lý nước dư thừa. Chất thải này dần dần tích tụ dưới đáy ao tạo thành lớp bùn độc, rất thiếu ôxy và chứa nhiều chất gây hại như ammonia, nitrite, hydrogen sulfide. Để tránh làm giảm diện tích ao nuôi do chất thải tích tụ làm tôm lảng tránh và tăng mật độ tôm nuôi trồng, thiết bị tự hành thu gom chất thải làm sạch nước trong vuông nuôi tôm đã được nghiên cứu, thiết kế và chế tạo thành công. Thiết bị đã thay thế các hoạt động làm sạch chất thải thủ công của con người, không sử dụng các nguồn năng lượng gây ô nhiễm, giảm nhu cầu về điện góp phần phát triển sản xuất tôm sạch đạt chuẩn GMP và phát triển bền vững ở các tỉnh ven biển miền Tây Việt Nam.

Page generated in 0.0687 seconds