• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 84
  • 67
  • 62
  • 47
  • 19
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • Tagged with
  • 1370
  • 1370
  • 266
  • 236
  • 217
  • 207
  • 192
  • 185
  • 184
  • 167
  • 156
  • 148
  • 130
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

CuIn1-xGaxS2(CIGS2) thin film solar cells on stainless steel foil for space power applications

Ghongadi, Shantinath R. 01 July 2001 (has links)
No description available.
482

Process optimization and characterization of CuIn1-xGaxS2 (CIGS2) polycrystalline thin films

Kulkarni, Shashank R. 01 July 2000 (has links)
No description available.
483

Development of scrubber, optimization of deposition parameters for large area CIGS2 solar cells

Kulkarni, Sachin Shashidhar 01 July 2003 (has links)
No description available.
484

Test and evaluation of photovoltaic modules using an automated test facility

Orozco, Lucy M. 01 January 1999 (has links)
No description available.
485

Materials studies related to the CuxS/ZnyCd1-yS solar cell

Uppal, Parvez Nasir January 1983 (has links)
A study was conducted of CuₓS and its interaction with the substrate and ambient. The goals of these CuₓS on CdS and Zn<sub>y</sub>Cd<sub>1-y</sub>S substrates were to find the differences in materials related properties, if any. Cadmium and zinc compositions in CuₓS formed on Zn<sub>y</sub>Cd<sub>1-y</sub>S films (O < y < 0.25) by means of ion exchange were measured using Auger Electron Spectroscopy (AES), Atomic Absorption Spectroscopy (AAS), and Electron Spectroscopy for Chemical Analysis (ESCA). Net concentrations of Cd and Zn in as-formed Cu₂S are generally in the 10¹⁸-10¹⁹ cm⁻³ range. Heat treatments in both oxidizing and reducing ambients raise the concentrations by over an order of magnitude, with the Zn concentration increasing more so than those of Cd. Large increases in Zn at or near the CuₓS surface were measured subsequent to heat treatment, accompanied by increased oxygen. Following heat treatments, Cd and Zn concentrations in the CuₓS"bulk" are found to be less than 10¹⁹ and 10²⁰ cm.⁻³, respectively, for all substrate compositions used. It is proposed that the presence of Cd and Zn can adversely effect the minority carrier lifetimes. These effects would tend to reduce the light generated current. The effects of heat treating CuₓS/Zn<sub>y</sub>Cd<sub>1-y</sub>S and CuₓS/CdS in reducing and various oxidizing ambients are also reported. Structural changes taking place in CuₓS as a result of these heat treatments were monitored by using x-ray diffraction. The principal physical mechanism responsible for phase changes in CuₓS appears to x be copper diffusion through the copper sulfide layer to the top surface as well as into the substrate. Changes in CuₓS stoichiometry were correlated with the sheet resistance of the CuₓS layer. Results indicate that heat treatment in a hydrogen atmosphere causes an increase in resistivity (corresponding to an increase in stoichiometry) while heat treatment in air causes the reverse effect. Wet air heat treatment tended to decrease the resistivity much more as compared to dry air. It was observed that CuₓS formed on Zn<sub>y</sub>Cd<sub>1-y</sub>S tended to degrade in stoichiometry much faster as compared to CuₓS formed on CdS. The resistivity of evaporated CuₓS on plain glass seemed to be linked to the amount of free copper and sulfur present in the as-deposited film. Argon heat treatment tended to decrease the resistivity by an order of magnitude. Heat treatment tended to react the free copper and sulfur, giving CuₓS. Free copper and sulfur can increase the resistivity by acting as neutral impurity scattering centers. As-deposited films were always Cu rich as evidenced by x-ray diffraction and EDAX. Argon heat treatment tended to decrease the amount of free copper present. X-ray photoelectron spectroscopy (XPS) was applied to the surface chemical characterization of chemiplated CuₓS on Zn<sub>y</sub>Cd<sub>1-y</sub>S and CdS. CuₓS was also vacuum evaporated onto glass substrates for this purpose. The effects of ambient (oxygen and water vapor in particular) on chemical species present at or near the CuₓS surface were investigated. Subsequent heat treatments of CuₓS/Zn<sub>y</sub>Cd<sub>1-y</sub>S and CuₓS/CdS promoted migration of Zn and Cd toward the Cu₂S surface. When formed on CdS, the CuₓS surface was found to contain CdO (or Cd (OH)₂) CuO, CuSO₄.nH₂O and CdSO₄.nH₂). Cu₂S formed on Zn<sub>y</sub>Cd<sub>1-y</sub>S was found to contain ZnO as the predominant chemical species, with the Cu and Cd compounds present in lesser amounts. Some interesting characteristics of powder standards used in the XPS studies, some of which have not appeared in the literature, are presented in Appendix 2. The above effects can account for key differences in the properties of CuₓS formed on Zn<sub>y</sub>Cd<sub>1-y</sub>S and CdS films. This provides information on the possible degradation mechanisms for these types of junctions. / Ph. D.
486

Ultrafast charge dynamics in mesoporous materials used in dye-sensitized solar cells

Tiwana, Priti January 2013 (has links)
This thesis is concerned with measuring ultrafast electron dynamics taking place in dye-sensitized mesoporous semiconductor films employed as working electrodes in dye-sensitized solar cells (DSCs). An understanding of these ultrafast charge transfer mechanisms is essential for designing efficient photovoltaic (PV) devices with high photon-to-current conversion efficiency. Optical-pump terahertz-probe (OPTP) spectroscopy is a sub-picosecond resolution, non-contact, photoconductivity measurement technique which can be used to directly measure charge carrier dynamics within nanostructured materials without the need for invoking complex modelling schemes. A combination of OPTP and photovoltaic measurements on mesoporous TiO2 films show an early-time intra-particle electron mobility of 0.1 cm2/(Vs). This value is an order of magnitude lower than that measured in bulk TiO2 and can be partly explained by the restricted electron movement because of geometrical constraints and increased trap sites in the nanostructured material. In addition, the mesoporous film behaves like a nanostructured composite material, with the TiO2 nanoparticles embedded in a low dielectric medium (air or vacuum), leading to lower apparent electron mobility. THz mobility measured in similar mesoporous ZnO and SnO2 films sensitized with the same dye is calculated to be 0.17 cm2/(Vs) for ZnO and 1.01 cm2/(Vs) for SnO2. Possible reasons for the deviation from mobilities reported in literature for the respective bulk materials have been discussed. The conclusion of this study is that while electron mobility values for nanoporous TiO2 films are approaching theoretical maximum values, both intra- and inter-particle electron mobility in mesoporous ZnO and SnO2 films offer considerable scope for improvement. OPTP has also been used to measure electron injection rates in dye-sensitized TiO2, ZnO and SnO2 nanostructured films. They are seen to proceed in the order TiO2 >SnO2 >ZnO. While the process is complete within a few picoseconds in TiO2/Z907, it is seen to extend beyond a nanosecond in case of ZnO. These measurements correlate well with injection efficiencies determined from DSCs fabricated from identical mesoporous films, suggesting that the slow injection components limit the overall solar cell photocurrent. The reasons for this observed difference in charge injection rates have been explored within. It is now fairly common practice in the photovoltaic community to apply a coating of a wide band-gap material over the metal-oxide nanoparticles in DSCs to improve device performance. However, the underlying reasons for the improvement are not fully understood. With this motivation, OPTP spectroscopy has been used to study how the conformal coating affects early-time mechanisms, such as electron injection, trapping or diffusion length. The electron injection process is unaffected in case of TiCl4-treated TiO2 and MgO-treated ZnO, while it becomes much slower in case of MgO-treated SnO2. Finally, a light-soaking effect observed in SnO2-based solid-state DSCs has been examined in detail using THz spectroscopy and transient PV measurement techniques. It is concluded that continued exposure to light results in a rearrangement of charged species at the metal-oxide surface. This leads to an increase in the density of acceptor states or a lowering of the SnO2 conduction band edge with respect to the dye excited state energy level, ultimately leading to faster electron transport and higher device photocurrents.
487

Ultrafast Exciton Dynamics at Molecular Surfaces

Monahan, Nicholas R. January 2015 (has links)
Further improvements to device performance are necessary to make solar energy conversion a compelling alternative to fossil fuels. Singlet exciton fission and charge separation are two processes that can heavily influence the power conversion efficiency of a solar cell. During exciton fission one singlet excitation converts into two triplet excitons, potentially doubling the photocurrent generated by higher energy photons. There is significant discord over the singlet fission mechanism and of particular interest is whether the process involves a multiexciton intermediate state. I used time-resolved two-photon photoemission to investigate singlet fission in hexacene thin films, a model system with strong electronic coupling. My results indicate that a multiexciton state forms within 40 fs of photoexcitation and loses singlet character on a 280 fs timescale, creating two triplet excitons. This is concordant with the transient absorption spectra of hexacene single crystals and definitively proves that exciton fission in hexacene proceeds through a multiexciton state. This state is likely common to all strongly-coupled systems and my results suggest that a reassessment of the generally-accepted singlet fission mechanism is required. Charge separation is the process of splitting neutral excitons into carriers that occurs at donor-acceptor heterojunctions in organic solar cells. Although this process is essential for device functionality, there are few compelling explanations for why it is highly efficient in certain organic photovoltaic systems. To investigate the charge separation process, I used the model system of charge transfer excitons at hexacene surfaces and time-resolved two-photon photoemission. Charge transfer excitons with sufficient energy spontaneously delocalize, growing from about 14 nm to over 50 nm within 200 fs. Entropy drives this delocalization, as the density of states within the Coulomb potential increases significantly with energy. This charge separation mechanism should occur at all donor-acceptor interfaces. My results show that entropy facilitates charge separation and indicate that the density of acceptor states should be a design consideration when constructing organic solar cells.
488

Strategies for high efficiency silicon solar cells

Davidson, Lauren Michel 01 May 2017 (has links)
The fabrication of low cost, high efficiency solar cells is imperative in competing with existing energy technologies. Many research groups have explored using III-V materials and thin-film technologies to create high efficiency cells; however, the materials and manufacturing processes are very costly as compared to monocrystalline silicon (Si) solar cells. Since commercial Si solar cells typically have efficiencies in the range of 17-19%, techniques such as surface texturing, depositing a surface-passivating film, and creating multi-junction Si cells are used to improve the efficiency without significantly increasing the manufacturing costs. This research focused on two of these techniques: (1) a tandem junction solar cell comprised of a thin-film perovskite top cell and a wafer-based Si bottom cell, and (2) Si solar cells with single- and double-layer silicon nitride (SiNx) anti-reflection coatings (ARC). The perovskite/Si tandem junction cell was modeled using a Matlab analytical program. The model took in material properties such as doping concentrations, diffusion coefficients, and band gap energy and calculated the photocurrents, voltages, and efficiencies of the cells individually and in the tandem configuration. A planar Si bottom cell, a cell with a SiNx coating, or a nanostructured black silicon (bSi) cell can be modeled in either an n-terminal or series-connected configuration with the perovskite top cell. By optimizing the bottom and top cell parameters, a tandem cell with an efficiency of 31.78% was reached. Next, planar Si solar cells were fabricated, and the effects of single- and double-layer SiNx films deposited on the cells were explored. Silicon nitride was sputtered onto planar Si samples, and the refractive index and thicknesses of the films were measured using ellipsometry. A range of refractive indices can be reached by adjusting the gas flow rate ratios of nitrogen (N2) and argon (Ar) in the system. The refractive index and thickness of the film affect where the minimum of the reflection curve is located. For Si, the optimum refractive index of a single-layer passivation film is 1.85 with a thickness of 80nm so that the minimum reflection is at 600nm, which is where the photon flux is maximized. However, using a double-layer film of SiNx, the Si solar cell performance is further improved due to surface passivation and lowered surface reflectivity. A bottom layer film with a higher refractive index passivates the Si cell and reduces surface reflectivity, while the top layer film with a smaller refractive index further reduces the surface reflectivity. The refractive indices and thicknesses of the double-layer films were varied, and current-voltage (IV) and external quantum efficiency (EQE) measurements were taken. The double-layer films resulted in an absolute value increase in efficiency of up to 1.8%.
489

Screen and stencil print technologies for industrial N-type silicon solar cells

Edwards, Matthew Bruce, ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, Faculty of Engineering, UNSW January 2008 (has links)
To ensure that photovoltaics contributes significantly to future world energy production, the cost per watt of producing solar cells needs to be drastically reduced. The use of n-type silicon wafers in conjunction with industrial print technology has the potential to lower the cost per watt of solar cells. The use of n-type silicon is expected to allow the use of cheaper Cz substrates, without a corresponding loss in device efficiency. Printed metallisation is well utilised by the PV industry due to its low cost, yet there are few examples of its application to n-type solar cells. This thesis explores the use of n-type Cz silicon with printed metallisation and diffusion from printed sources in creating industrially applicable solar cell structures. The thesis begins with an overview of existing n-type solar cell structures, previous printed thick film metallisation research and previous research into printed dopant sources. A study of printed thick-film metallisation for n-type solar cells is then presented, which details the fabrication of boron doped p-type emitters followed by a survey of thick film Ag, Al, and Ag/Al inks for making contact to a p-emitter layer. Drawbacks of the various inks include high contact resistance, low metal conductivity or both. A cofire regime for front and rear contacts is established and an optimal emitter selected. A study of printed dopant pastes is presented, with an objective to achieve selective, heavily doped regions under metal contacts without significantly compromising minority carrier lifetime in solar cells. It is found that heavily doped regions are achievable with both boron and phosphorus, but that only phosphorus paste was capable of post-processing lifetime compatible with good efficiencies. The effect of belt furnace processing on n-type silicon wafers is explored, with large losses in implied voltage observed due to contamination of Si wafers from transition metals present in the belt furnace. Due to exposure to chromium in the belt furnace, no significant advantage in using n-type wafers instead of p-type is observed during the belt furnace processing step. Finally, working solar cells with efficiencies up to 16.1% are fabricated utilising knowledge acquired in the earlier chapters. The solar cells are characterised using several new photoluminescence techniques, including photoluminescence with current extraction to measure the quality of metal contacts. The work in this thesis indicates that n-type printed silicon solar cell technology shows potential for good performance at low cost.
490

Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells

Kerr, Mark John, Mark.Kerr@originenergy.com.au January 2002 (has links)
[Some symbols cannot be rendered in the following metadata – please see the PDF file for an accurate version of the Abstract] ¶ Recombination within the bulk and at the surfaces of crystalline silicon has been investigated in this thesis. Special attention has been paid to the surface passivation achievable with plasma enhanced chemical vapour deposited (PECVD) silicon nitride (SiN) films due to their potential for widespread use in silicon solar cells. The passivation obtained with thermally grown silicon oxide (SiO2) layers has also been extensively investigated for comparison. ¶ Injection-level dependent lifetime measurements have been used throughout this thesis to quantify the different recombination rates in silicon. New techniques for interpreting the effective lifetime in terms of device characteristics have been introduced, based on the physical concept of a net photogeneration rate. The converse relationships for determining the effective lifetime from measurements of the open-circuit voltage (Voc) under arbitrary illumination have also been introduced, thus establishing the equivalency of the photoconductance and voltage techniques, both quasi-static and transient, by allowing similar possibilities for all of them. ¶ The rate of intrinsic recombination in silicon is of fundamental importance. It has been investigated as a function of injection level for both n-type and p-type silicon, for dopant densities up to ~5x1016cm-3. Record high effective lifetimes, up to 32ms for high resistivity silicon, have been measured. Importantly, the wafers where commercially sourced and had undergone significant high temperature processing. A new, general parameterisation has been proposed for the rate of band-to-band Auger recombination in crystalline silicon, which accurately fits the experimental lifetime data for arbitrary injection level and arbitrary dopant density. The limiting efficiency of crystalline silicon solar cells has been re-evaluated using this new parameterisation, with the effects of photon recycling included. ¶ Surface recombination processes in silicon solar cells are becoming progressively more important as industry drives towards thinner substrates and higher cell efficiencies. The surface recombination properties of well-passivating SiN films on p-type and n-type silicon have been comprehensively studied, with Seff values as low as 1cm/s being unambiguously determined. The well-passivating SiN films optimised in this thesis are unique in that they are stoichiometric in composition, rather than being silicon rich, a property which is attributed to the use of dilute silane as a process gas. A simple physical model, based on recombination at the Si/SiN interface being determined by a high fixed charge density within the SiN film (even under illumination), has been proposed to explain the injection-level dependent Seff for a variety of differently doped wafers. The passivation obtained with the optimised SiN films has been compared to that obtained with high temperature thermal oxides (FGA and alnealed) and the limits imposed by surface recombination on the efficiency of SiN passivated solar cells investigated. It is shown that the optimised SiN films show little absorption of UV photons from the solar spectrum and can be easily patterned by photolithography and wet chemical etching. ¶ The recombination properties of n+ and p+ emitters passivated with optimised SiN films and thermal SiO2 have been extensively studied over a large range of emitter sheet resistances. Both planar and random pyramid textured surfaces were studied for n+ emitters, where the optimised SiN films were again found to be stoichiometric in composition. The optimised SiN films provided good passivation of the heavily doped n+-Si/SiN interface, with the surface recombination velocity increasing from 1400cm/s to 25000cm/s as the surface concentration of electrically active phosphorus atoms increased from 7.5x1018cm-3 to 1.8x1020cm-3. The optimised SiN films also provided reasonable passivation of industrial n+ emitters formed in a belt-line furnace. It was found that the surface recombination properties of SiN passivated p+ emitters was poor and was worst for sheet resistances of ~150./ . The hypothesis that recombination at the Si/SiN interface is determined by a high fixed charge density within the SiN films was extended to explain this dependence on sheet resistance. The efficiency potential of SiN passivated n+p cells has been investigated, with a sheet resistance of 80-100./ and a base resistivity of 1-2.cm found to be optimal. Open-circuit voltages of 670-680mV and efficiencies up to ~20% and ~23% appear possible for SiN passivated planar and textured cells respectively. The recombination properties measured for emitters passivated with SiO2, both n+ and p+, were consistent with other studies and found to be superior to those obtained with SiN passivation. ¶ Stoichiometric SiN films were used to passivate the front and rear surfaces of various solar cell structures. Simplified PERC cells fabricated on 0.3.cm p-type silicon, with either a planar or random pyramid textured front surface, produced high Voc’s of 665-670mV and conversion efficiencies up to 19.7%, which are amongst the highest obtained for SiN passivated solar cells. Bifacial solar cells fabricated on planar, high resistivity n-type substrates (20.cm) demonstrated Voc’s up to 675mV, the highest ever reported for an all-SiN passivated cell, and excellent bifaciality factors. Planar PERC cells fabricated on gettered 0.2.cm multicrystalline silicon have also demonstrated very high Voc’s of 655-659mV and conversion efficiencies up to 17.3% using a single layer anti-reflection coating. Short-wavelength internal quantum efficiency measurements confirmed the excellent passivation achieved with the optimised stoichiometric SiN films on n+ emitters, while long-wavelength measurements show that there is a loss of short-circuit current at the rear surface of SiN passivated p-type cells. The latter loss is attributed to parasitic shunting, which arises from an inversion layer at the rear surface due to the high fixed charge (positive) density in the SiN layers. It has been demonstrated that that a simple way to reduce the impact of the parasitic shunt is to etch away some of the silicon from the rear contact dots. An alternative is to have locally diffused p+ regions under the rear contacts, and a novel method to form a rear structure consisting of a local Al-BSF with SiN passivation elsewhere, without using photolithography, has been demonstrated.

Page generated in 0.0652 seconds