• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Das Diffusions- und Aktivierungsverhalten von Arsen und Phosphor in Germanium

Wündisch, Clemens 18 February 2016 (has links) (PDF)
Seit 2002 kam ein neues Interesse an Germanium als Material für CMOS-Bauelemente auf, angetrieben durch die höhere Beweglichkeit der Ladungsträger im Vergleich zu Silizium. Für die Herstellung von Germanium MOSFETs bestehen allerdings noch einige Herausforderungen. Speziell die Problematik der hohen n-Dotierung für die Source- und Draingebiete der PMOS-Transistoren hat sich dabei als potentieller Roadblocker herauskristallisiert. Die geringe Aktivierung und die hohe Diffusivität der Donatoren in Germanium stellen ein Problem für die Herstellung von CMOS-Schaltkreisen aus Germanium dar. Als ursächlich dafür wurden Vakanzen identifiziert (Bracht et.al.). Um das Diffusions- und das Aktivierungsverhalten von Arsen und Phosphor in Germanium zu untersuchen, wurden p-Typ Germaniumwafer durch Ionenimplantation mit beiden Spezies dotiert und anschließend durch Rapid-Thermal-Annealing und/ oder Flash-Lamp-Annealing ausgeheilt. Zusätzlich wurden Experimente mit kodotierten und P-dotierten Proben mit verringerter Schichtkonzentration durchgeführt. Untersuchungen mit Rutherford-Backscattering-Spektroskopie und Transmissions-Elektronen-Mikroskopie werden durchgeführt, um die strukturellen Eigenschaften der Proben infolge der Implantation und der Ausheilung festzustellen. Mittels Sekundärionen-Massen-Spektroskopie wird die Dotandenkonzentration bestimmt. Es folgen elektrische Messungen des Schichtwiderstandes bei Raumtemperatur und in geeigneten Fällen bei Temperaturen unterhalb 10K. An ausgewählten Proben werden Hallmessungen durchgeführt. Die Gesamtheit der Analyseverfahren ermöglicht eine Analyse des Rückwachsverhaltens, der Diffusion und der elektrischen Aktivierung der Dotanden unter den verschiedenen Implantations- und Ausheilbedingungen. Die nach verschiedenen Methoden bestimmten Größen wie die Ladungsträgerkonzentration und -mobilität werden betrachtet und im Hinblick auf die Parameter der Probenpräparation analysiert und mit der Literatur verglichen. Abschließend werden mögliche Mechanismen zur Deaktivierung von Donatoren in Germanium erörtert.
2

Investigation on physical properties of epitaxial ferromagnetic film Mn5Ge3 for spintronic applications

Xie, Yufang 18 October 2021 (has links)
The focus of the work is on the epitaxial growth of Mn5Ge3 layers on Ge (001) via ultra-fast solid-state reaction between Mn and Ge using millisecond range FLA at the ambient pressure in continuous N2 flow. Epitaxial Mn5Ge3 layers were obtained both on Ge (001) and Ge (111) substrates by optimizing the fabrication parameters, Mn thickness (30 nm), FLA energy density (100-110 Jcm-2) and FLA duration time. The epitaxial relationship between the alloy film and substrate is the (100) plane of Mn5Ge3 along [001] direction parallel with the [100] direction of Ge (001) plane. It is notable that the hexagonal c axis of Mn5Ge3 on Ge (001) is parallel to the film surface plane, while the reported Mn5Ge3’s c axis on Ge (111) tends to be perpendicular to the film plane. In fact, using ultrafast-SPE the c-axis of Mn5Ge3 is always parallel to the sample surface. Mn5Ge3 films exhibit ferromagnetism which is demonstrated by the anomalous Hall effect up to the TC = 283±5 K. The films exhibit their in-plane magnetic easy axis along the hexagonal c-axis independent of the Mn5Ge3 film thickness. This provides a new avenue for the fabrication of Ge-based spin-injectors fully compatible with industrial CMOS technology. The deeper understanding of the magnetic, structural and electrical properties of (100) epitaxial Mn5Ge3 grown on Ge (001) are presented by utilizing DFT calculation (by our collaborator M. Birowska) and various experimental methods. The Mn atoms in Mn5Ge3 occupy two distinct Wyckoff positions with fourfold (Mn1) and sixfold (Mn2) multiplicity. During cooling down to 100 K the Mn5Ge3 unit-cell shows remarkable structural deformation. The nearest distance d3 between Mn2-Mn2 atoms in the hexagonal a-b plane is shortened much faster than the nearest distance d1 between Mn1-Mn1 atoms along hexagonal c axis. The DFT calculations show that below critical distance d3 < 3.002 Å, the Mn2 atoms are AFM coupled while for d3 > 3.002 Å the coupling is FM. The FM coupling between Mn1 atoms weakly depends on the atomic distance d1. Moreover, there is a transition from collinear to noncollinear spin configuration at about 70±5 K. Simultaneously, at low temperature, the angular dependent magnetoresistance shows a switching from multi-fold component to twofold symmetry. The combination of different experimental techniques with theoretical calculations enabled us to conclude that the switching between non-collinear and collinear spin configurations and the variation of anisotropic magnetoresistance in Mn5Ge3 is due to the strain induced change of the magnetic coupling between Mn2-Mn2 atoms. Finally, the effects of strain on the structural and magnetic properties of epitaxial Mn5Ge3 on Ge (111) substrate by applying ms-range FLA are investigated. The X-ray diffraction results demonstrate that during FLA process the formation of nonmagnetic secondary phases of MnxGey is fully suppressed and the in-plane tensile strain is enhanced. The temperature dependent magnetization indicates that after FLA the Curie temperature of Mn5Ge3 increases from 283±5 K to above 400 K. Further Monte Carlo simulations manifest that the change of the strain in Mn5Ge3 during ms-range FLA modifies the distance between adjacent Mn atoms in the hexagonal basal plane, which provokes the different ferromagnetic interaction between them. Consequently, the significant increase of Curie temperature is observed. This provides a good way to improve the Curie temperature of Mn5Ge3 which is promising to realize room-temperature operated Ge based spin-injectors.
3

Das Diffusions- und Aktivierungsverhalten von Arsen und Phosphor in Germanium

Wündisch, Clemens 19 November 2015 (has links)
Seit 2002 kam ein neues Interesse an Germanium als Material für CMOS-Bauelemente auf, angetrieben durch die höhere Beweglichkeit der Ladungsträger im Vergleich zu Silizium. Für die Herstellung von Germanium MOSFETs bestehen allerdings noch einige Herausforderungen. Speziell die Problematik der hohen n-Dotierung für die Source- und Draingebiete der PMOS-Transistoren hat sich dabei als potentieller Roadblocker herauskristallisiert. Die geringe Aktivierung und die hohe Diffusivität der Donatoren in Germanium stellen ein Problem für die Herstellung von CMOS-Schaltkreisen aus Germanium dar. Als ursächlich dafür wurden Vakanzen identifiziert (Bracht et.al.). Um das Diffusions- und das Aktivierungsverhalten von Arsen und Phosphor in Germanium zu untersuchen, wurden p-Typ Germaniumwafer durch Ionenimplantation mit beiden Spezies dotiert und anschließend durch Rapid-Thermal-Annealing und/ oder Flash-Lamp-Annealing ausgeheilt. Zusätzlich wurden Experimente mit kodotierten und P-dotierten Proben mit verringerter Schichtkonzentration durchgeführt. Untersuchungen mit Rutherford-Backscattering-Spektroskopie und Transmissions-Elektronen-Mikroskopie werden durchgeführt, um die strukturellen Eigenschaften der Proben infolge der Implantation und der Ausheilung festzustellen. Mittels Sekundärionen-Massen-Spektroskopie wird die Dotandenkonzentration bestimmt. Es folgen elektrische Messungen des Schichtwiderstandes bei Raumtemperatur und in geeigneten Fällen bei Temperaturen unterhalb 10K. An ausgewählten Proben werden Hallmessungen durchgeführt. Die Gesamtheit der Analyseverfahren ermöglicht eine Analyse des Rückwachsverhaltens, der Diffusion und der elektrischen Aktivierung der Dotanden unter den verschiedenen Implantations- und Ausheilbedingungen. Die nach verschiedenen Methoden bestimmten Größen wie die Ladungsträgerkonzentration und -mobilität werden betrachtet und im Hinblick auf die Parameter der Probenpräparation analysiert und mit der Literatur verglichen. Abschließend werden mögliche Mechanismen zur Deaktivierung von Donatoren in Germanium erörtert.
4

Optimisation des jonctions de dispositifs (FDSOI, TriGate) fabriqués à faible température pour l’intégration 3D séquentielle / Low temperature devices (FDSOI, TriGate) junction optimization for 3D sequential integration

Pasini, Luca 15 March 2016 (has links)
L’intégration 3D séquentielle représente une alternative potentielle à la réduction des dimensions afin de gagner encore en densité d’une génération à la suivante. Le principal défi concerne la fabrication du transistor de l’étage supérieur avec un faible budget thermique; ceci afin d’éviter la dégradation du niveau inférieur. L’étape de fabrication la plus critique pour la réalisation du niveau supérieur est l’activation des dopants. Celle-ci est généralement effectuée par recuit à une température supérieure à 1000 °C. Dans ce contexte, cette thèse propose des solutions pour activer les dopants à des températures inférieures à 600 °C par la technique dite de recristallisation en phase solide. Les conditions de dopage ont été optimisées pour améliorer le niveau d’activation et le temps de recuit tout en réduisant la température d’activation jusqu’à 450°C. Les avancées obtenues ont été implémentées sur des dispositifs avancés FDSOI et TriGate générant des dispositifs avec des performances inférieures aux références fabriquées à hautes températures (supérieures à 1000 °C). En utilisant des simulations TCAD et en les comparant aux mesures électriques, nous avons montré que la région la plus critique en termes d’activation se trouve sous les espaceurs de la grille. Nous montrons alors qu’une intégration dite « extension first » est le meilleur compromis pour obtenir de bonnes performances sur des dispositifs fabriqués à faible température. En effet, l’implantation des dopants avant l’épitaxie qui vise à surélever les sources et drains compense l’absence de diffusion à basse température. Ces résultats ont par la suite été étendus pour des dispositifs TriGate et FinFETs sur isolants. Pour la première fois, l’intégration « extension first » a été démontrée pour des N et PFETs d’une technologie 14 nm FDSOI avec des résultats prometteurs en termes de performances. Les résultats obtenus montrent notamment qu’il est possible d’amorphiser partiellement un film très mince avant d’effectuer une recroissance épitaxiale sur une couche dopée. Finalement, une implantation ionique à relativement haute température (jusqu’à 500 °C) a été étudiée afin de doper les accès sans amorphiser totalement le film mince, ce qui est critique dans le cas des dispositifs FDSOI et FinFET. Nous montrons que les niveaux d’activation après implantation sont trop faibles pour obtenir des bonnes performances et que l’implantation ionique « chaude » est prometteuse à condition d’être utilisée avec un autre mécanisme d’activation comme le recuit laser. / 3D sequential integration is a promising candidate for the scaling sustainability for technological nodes beyond 14 nm. The main challenge is the development of a low temperature process for the top transistor level that enables to avoid the degradation of the bottom transistor level. The most critical process step for the top transistor level fabrication is the dopant activation that is usually performed at temperature higher than 1000 °C. In the frame of this Ph.D. work, different solutions for the dopant activation optimization at low temperature (below 600 °C) are proposed and integrated in FDSOI and TriGate devices. The technique chosen for the dopant activation at low temperature is the solid phase epitaxial regrowth. First, doping conditions have been optimized in terms of activation level and process time for low temperatures (down to 450 °C) anneals. The obtained conditions have been implemented in FDSOI and TriGate devices leading to degraded electrical results compared to the high temperature process of reference (above 1000 °C). By means of TCAD simulation and electrical measurements comparison, the critical region of the transistor in terms of activation appears to be below the offset spacer. The extension first integration scheme is then shown to be the best candidate to obtain high performance low temperature devices. Indeed, by performing the doping implantation before the raised source and drain epitaxial growth, the absence of diffusion at low temperature can be compensated. This conclusion can be extrapolated for TriGate and FinFET on insulator devices. Extension first integration scheme has been demonstrated for the first time on N and PFETs in 14 nm FDSOI technology showing promising results in terms of performance. This demonstration evidences that the two challenges of this integration i.e. the partial amorphization of very thin films and the epitaxy regrowth on implanted access are feasible. Finally, heated implantation has been investigated as a solution to dope thin access regions without full amorphization, which is particularly critical for FDSOI and FinFET devices. The as-implanted activation levels are shown to be too low to obtain high performance devices and the heated implantation appears a promising candidate for low temperature devices if used in combination with an alternative activation mechanism.
5

Growth of lattice-matched hybrid semiconductor-ferromagnetic trilayers using solid-phase epitaxy. / Towards a spin-selective Schottky barrier tunnel transistor.

Gaucher, Samuel 08 April 2021 (has links)
Diese Arbeit befasst sich mit dem Wachstum von Dünnschichtstrukturen, die zur Herstellung eines Spin-selektiven Schottky-Barrier-Tunneltransistors (SS-SBTT) erforderlich sind. Das Bauelement basiert auf dem Transport von Ladungsträgern durch eine dünne halbleitende (SC) Schicht, die zwei ferromagnetische (FM) Kontakte trennt. Daher müssen hochqualitative und gitterangepasste vertikale FM/SC/FM-Trilayer gezüchtet werden, was aufgrund der inkompatiblen Kristallisationsenergien zwischen SC und Metallen eine experimentelle Herausforderung darstellt. Das Problem wurde mit einem Festphasenepitaxie-Ansatz gelöst, bei dem eine dünne amorphe Ge-Schicht (4-8 nm) durch Ausglühen über Fe3Si auf GaAs(001)-Substraten kristallisiert wird. Langsame Glühgeschwindigkeiten bis zu einer Temperatur von 260°C konnten ein neues gitterangepasstes Polymorph von FeGe2 erzeugen, über das ein zweites Fe3Si mittels Molekularstrahlepitaxie gezüchtet werden könnte. SQUID-Magnetometermessungen zeigen, dass die dreischichtigen Proben in antiparallele Magnetisierungszustände versetzt werden können. Vertikale Spin-Ventil-Bauelemente, die mit verschiedenen Trilayern hergestellt wurden, wurden verwendet, um zu demonstrieren, dass der Ladungstransport über die Heteroübergänge spinselektiv ist und bei Raumtemperatur einen Magnetowiderstand von höchstens 0,3% aufweist. Der Effekt nimmt bei niedrigen Temperaturen ab, was mit einem ferromagnetischen Übergang in der FeGe2-Schicht korreliert. Durch TEM- und XRD-Experimente konnte festgestellt werden, dass das neue FeGe2-Polymorph die Raumgruppe P4mm aufweist und bis zu 17% Si-Atome als Ersatz für Ge-Stellen enthält. Die Isolierung von FeGe2 war möglich, indem das Verhältnis von Fe-, Si- und Ge-Atomen so eingestellt wurde, dass die richtige Stöchiometrie bei vollständiger Durchmischung erreicht wurde. Anhand von FeGe2-Dünnschichten wurde ein zunehmender spezifischer Widerstand bei niedriger Temperatur und ein semi-metallischer Charakter beobachtet. / This thesis discusses the growth of thin film structures required to fabricate a Spin-Selective Schottky Barrier Tunnel transistor (SS-SBTT). The device relies on charge carriers being transported through a thin semiconducting (SC) layer separating two ferromagnetic (FM) contacts. Thus, high quality and lattice-matched FM/SC/FM vertical trilayers must be grown, which is experimentally challenging due to incompatible crystallization energies between SC and metals. The problem was solved using a solid-phase epitaxy approach, whereby a thin amorphous layer of Ge (4-8 nm) is crystallized by annealing over Fe3Si on GaAs(001) substrates. Slow annealing rates up to a temperature of 260°C could produce a lattice-matched Ge-rich compound, over which a second Fe3Si could be grown my molecular-beam epitaxy. The compound obtained during annealing is a new layered polymorph of FeGe2. SQUID magnetometry measurements indicate that the trilayer samples can be placed in states of antiparallel magnetization. Vertical spin valve devices created using various trilayers were used to demonstrate that charge transport is spin-selective across the heterojunctions, showing a magnetoresistance of at most 0.3% at room temperature. The effect decreases at low temperature, correlating with a ferromagnetic transition in the FeGe2 layer. TEM and XRD experiments could determine that the new FeGe2 polymorph has a space group P4mm, containing up to 17% Si atoms substituting Ge sites. Isolating FeGe2 was possible by tuning the proportion Fe, Si and Ge atoms required to obtain the right stoichiometry upon full intermixing. Hall bars fabricated on FeGe2 thin films were used to observe an increasing resistivity at low temperature and semimetallic character.
6

Structural and Magnetic Properties of Epitaxial MnSi(111) Thin Films

Karhu, Eric 12 January 2012 (has links)
MnSi(111) films were grown on Si(111) substrates by solid phase epitaxy (SPE) and molecular beam epitaxy (MBE) to determine their magnetic structures. A lattice mismatch of -3.1% causes an in-plane tensile strain in the film, which is partially relaxed by misfit dislocations. A correlation between the thickness dependence of the Curie temperature (TC) and strain is hypothesized to be due to the presence of interstitial defects. The in-plane tensile strain leads to an increase in the unit cell volume that results in an increased TC as large as TC = 45 K compared to TC = 29.5 K for bulk MnSi crystals. The epitaxially induced tensile stress in the MnSi thin films creates an easy-plane uniaxial anisotropy. The magnetoelastic coefficient was obtained from superconducting quantum interference device (SQUID) magnetometry measurements combined with transmission electron microscopy (TEM) and x-ray diffraction (XRD) data. The experimental value agrees with the coefficient determined from density functional calculations, which supports the conclusion that the uniaxial anisotropy originates from the magnetoelastic coupling. Interfacial roughness obscured the magnetic structure of the SPE films, which motivated the search for a better method of film growth. MBE grown films displayed much lower interfacial roughness that enabled a determination of the magnetic structure using SQUID and polarized neutron reflectometry (PNR). Out-of-plane magnetic field measurements on MBE grown MnSi(111) thin films on Si(111) substrates show the formation of a helical conical phase with a wavelength of 2?/Q = 13.9 ± 0.1 nm. The presence of both left-handed and right-handed magnetic chiralities is found to be due to the existence of inversion domains that result from the non-centrosymmetric crystal structure of MnSi. The magnetic frustration created at the domain boundaries explains an observed glassy behaviour in the magnetic response of the films. PNR and SQUID measurements of MnSi thin films performed in an in-plane magnetic field show a complex magnetic behaviour. Experimental results combined with theoretical results obtained from a Dzyaloshinskii model with an added easy-plane uniaxial anisotropy reveals the existence of numerous magnetic modulated states that do not exist in bulk MnSi. It is demonstrated in this thesis that modulated chiral magnetic states can be investigated with epitaxially grown MnSi(111) thin films on insulating Si substrates, which offers opportunities to investigate spin-dependent transport in chiral magnetic heterostructures based on this system.

Page generated in 0.0658 seconds