• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The prospects of district heating in the Southeast city district in Uppsala : Design considerations and performance analysis in a developing urban area

Karlsson, Jonna, Ekstrand, Anna, Andersson, Elsa, Kvist, Sofia January 2024 (has links)
The construction of the Southeast city district in Uppsala will start in 2025 with plans to be completed in 2050. When a new district is built, there is an opportunity to explore the best possible solution to all the needs of the city, one of the needs that must be met is the heat demand of all buildings. One possible way to meet these needs is through district heating. The aim of this report is to design and investigate the efficiency of a heat distribution network in the Southeast city district by determining its distribution losses and the requirements that heating distribution networks must fulfill. The method used to satisfy the purpose is to simulate the systems through a model in Python. The model produces key parameters such as distribution losses, pressure drop and temperature drop during high heat demand and low heat demand. The results of the report shows what a possible distribution network design could look like for two stages of construction. It is also shown that during low heat demand, the highest distribution losses were in the return pipe. During the high heat demand, the highest distribution losses were in the supply pipe. This is also the period of the greatest mass flow rate, temperature drop and pressure drop. The discussion addresses the correlation between these parameters as well as exploring how connecting an additional building stage impacts the performance of the system. The conclusions of this paper is that the designed distribution networks fulfill the necessary criteria for pressure, temperature and energy delivery with acceptable distribution losses. When a additional stage is connected to the system, distribution losses do not increase significantly, making the model suitable for future extensions of district heating networks.
2

Powering the Future : Electric Vehicle Charging Needs and Infrastructure in Uppsala’s Southeast District

Lundin, Hanna, af Ekenstam, Sofia, Stensvad, Louise, Sterner, Anna January 2024 (has links)
Uppsala Municipality is planning to build the southeast city district (SÖS), aiming to achieve climate neutrality by 2030 and climate positivity by 2050. In this thesis, the integration of electric vehicles (EVs) and charging infrastructure was investigated. It also examined the power demand, and the potential of photovoltaic (PV) production in combination with a battery storage system in SÖS, and its ability to reduce power peaks. The study was delimited to only incorporating charging demand in mobility houses, not from the private parking spots, as well as excluding alternative fossil-free vehicle options. Utilizing a stochastic model and data from Copenhagen and Stockholm, using trends for car pools and EV ratio, two scenarios were designed to forecast the spread of EVs and their impact on the power grid in SÖS by 2050. Since SÖS consists of both residential housing and workplaces, three different simulations were created to take their differences in mobility pattern into account. The two scenarios generated a different number of EVs, which resulted in a varied amount of charging points. Furthermore, the difference in EVs and mobility patterns showed different values of power demands and power peaks. PV panels combined with a battery storage system were able to both reduce the daily power demand, as well as the power peaks. For the sensitivity analysis, different sizes of the battery storage were examined. Finally, this report presents guidance for how to manage the challenges with an increased power demand from the more extensive use of EVs.

Page generated in 0.107 seconds