Spelling suggestions: "subject:"apatial modelling"" "subject:"cpatial modelling""
21 |
High-resolution Permafrost Distribution Modelling for the Central and Southern Yukon, and Northwestern British Columbia, CanadaBonnaventure, Philip P. 19 April 2011 (has links)
Basal Temperature of Snow (BTS) measurements were used as the primary inputs to a high resolution (30 x 30 m grid cells) empirical-statistical regional permafrost probability model for the southern and central Yukon, and northernmost British Columbia (59° - 65°N). Data from seven individual study areas distributed across the region were combined using a blended distance decay technique, with an eighth area used for validation. The model predictions are reasonably consistent with previous permafrost maps for the area with some notable differences and a much higher level of detail. The modelling gives an overall permafrost probability of 52%. North of 62°N, permafrost becomes more extensive in the lowland areas whereas farther south permafrost is typically common only above treeline.
Significant differences exist between the mountain environments of the Yukon and the Swiss Alps where the BTS method originated and as a result different modelling approaches had to be developed. This work therefore: (1) develops additional explanatory variables for permafrost probability modelling, the most notable of which is equivalent elevation, (2) confirms the use of ground truthing as a requirement for empirical-statistical modelling in the Yukon and (3) uses a combination of models for the region in order to spatially predict between study areas.
The results of this thesis will be of use to linear infrastructure route-planning, geohazard assessment and climate change adaptation strategies. Future work employing the model will allow the effects of scenario-based climate warming to be examined.
|
22 |
Riverscape-mediated effects of introduced trout on non-diadromous galaxiid fishes in New ZealandWoodford, Darragh J. January 2009 (has links)
The impact of invasive predators on native prey may depend on the availability and distribution of invader-free refugia across landscapes, if predators create demographic ‘sink’ populations in invaded patches, giving rise to source-sink dynamics in prey populations. Propagule pressure of immigrants dispersing from refugia (or sources) may consequently drive persistence in sink habitat, affecting predator-prey co-existence across the landscape. I studied whether introduced brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) create source-sink structuring in two native galaxiid fish species (Galaxias vulgaris and G. paucispondylus) in the rivers of the central South Island, New Zealand, and whether such dynamics affected the distributions of either species across river networks or “riverscapes”. Young-of-the-year (YOY) G. vulgaris recruitment was rare in trout-invaded streams and consistently high in trout-free streams. Thus, trout-free reaches appeared to act as sources in a river network, while the majority of the trout-invaded riverscape was a demographic sink (i.e., no local recruitment occurred). Surveys of YOY G. paucispondylus did not reveal trout-induced source-sink dynamics, although mesocosm predation experiments suggested both species were highly vulnerable to predation by large trout. Galaxias paucispondylus recruitment was highest in intermittently flowing streams that were marginal habitats for trout, suggesting indirect interactions between trout and habitat affect G. paucispondylus distribution. Network configuration of trout-free source populations affected the distribution of G. vulgaris, as galaxiids were excluded from small streams with high bed stability that were far from sources. The interaction between propagule pressure and habitat gradients in mediating effects of trout on G. vulgaris distributions indicates habitat characteristics affect predator-prey interactions in a spatially explicit manner. Furthermore, the outcome of predator-prey interactions should be able to be modelled using habitat data alone if habitat consistently mediates predator impacts. I developed a GIS-based spatial model to predict where trout would exclude G. vulgaris in river networks, based on stream size and distance to galaxiid source populations. The model was tested in three different riverscapes using fish occurrence patterns obtained from electrofishing surveys, and successfully predicted G. vulgaris exclusion by trout. This further demonstrates the importance of habitat configuration in driving interspecific interactions at the landscape scale. These findings suggest removing trout from small, stable tributaries to create new demographic sources could improve overall persistence of G. vulgaris across trout-invaded riverscapes. The galaxiid exclusion model should also be used to detect undiscovered trout-free source populations, and to aid in selecting streams for restoration of galaxiid populations through trout eradication.
|
23 |
High-resolution Permafrost Distribution Modelling for the Central and Southern Yukon, and Northwestern British Columbia, CanadaBonnaventure, Philip P. 19 April 2011 (has links)
Basal Temperature of Snow (BTS) measurements were used as the primary inputs to a high resolution (30 x 30 m grid cells) empirical-statistical regional permafrost probability model for the southern and central Yukon, and northernmost British Columbia (59° - 65°N). Data from seven individual study areas distributed across the region were combined using a blended distance decay technique, with an eighth area used for validation. The model predictions are reasonably consistent with previous permafrost maps for the area with some notable differences and a much higher level of detail. The modelling gives an overall permafrost probability of 52%. North of 62°N, permafrost becomes more extensive in the lowland areas whereas farther south permafrost is typically common only above treeline.
Significant differences exist between the mountain environments of the Yukon and the Swiss Alps where the BTS method originated and as a result different modelling approaches had to be developed. This work therefore: (1) develops additional explanatory variables for permafrost probability modelling, the most notable of which is equivalent elevation, (2) confirms the use of ground truthing as a requirement for empirical-statistical modelling in the Yukon and (3) uses a combination of models for the region in order to spatially predict between study areas.
The results of this thesis will be of use to linear infrastructure route-planning, geohazard assessment and climate change adaptation strategies. Future work employing the model will allow the effects of scenario-based climate warming to be examined.
|
24 |
Riverscape-mediated effects of introduced trout on non-diadromous galaxiid fishes in New ZealandWoodford, Darragh J. January 2009 (has links)
The impact of invasive predators on native prey may depend on the availability and distribution of invader-free refugia across landscapes, if predators create demographic ‘sink’ populations in invaded patches, giving rise to source-sink dynamics in prey populations. Propagule pressure of immigrants dispersing from refugia (or sources) may consequently drive persistence in sink habitat, affecting predator-prey co-existence across the landscape. I studied whether introduced brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) create source-sink structuring in two native galaxiid fish species (Galaxias vulgaris and G. paucispondylus) in the rivers of the central South Island, New Zealand, and whether such dynamics affected the distributions of either species across river networks or “riverscapes”. Young-of-the-year (YOY) G. vulgaris recruitment was rare in trout-invaded streams and consistently high in trout-free streams. Thus, trout-free reaches appeared to act as sources in a river network, while the majority of the trout-invaded riverscape was a demographic sink (i.e., no local recruitment occurred). Surveys of YOY G. paucispondylus did not reveal trout-induced source-sink dynamics, although mesocosm predation experiments suggested both species were highly vulnerable to predation by large trout. Galaxias paucispondylus recruitment was highest in intermittently flowing streams that were marginal habitats for trout, suggesting indirect interactions between trout and habitat affect G. paucispondylus distribution. Network configuration of trout-free source populations affected the distribution of G. vulgaris, as galaxiids were excluded from small streams with high bed stability that were far from sources. The interaction between propagule pressure and habitat gradients in mediating effects of trout on G. vulgaris distributions indicates habitat characteristics affect predator-prey interactions in a spatially explicit manner. Furthermore, the outcome of predator-prey interactions should be able to be modelled using habitat data alone if habitat consistently mediates predator impacts. I developed a GIS-based spatial model to predict where trout would exclude G. vulgaris in river networks, based on stream size and distance to galaxiid source populations. The model was tested in three different riverscapes using fish occurrence patterns obtained from electrofishing surveys, and successfully predicted G. vulgaris exclusion by trout. This further demonstrates the importance of habitat configuration in driving interspecific interactions at the landscape scale. These findings suggest removing trout from small, stable tributaries to create new demographic sources could improve overall persistence of G. vulgaris across trout-invaded riverscapes. The galaxiid exclusion model should also be used to detect undiscovered trout-free source populations, and to aid in selecting streams for restoration of galaxiid populations through trout eradication.
|
25 |
Priorização de áreas para restauração florestal visando conservar solo, água e biodiversidade em paisagens agrícolas / Identifying critical areas for forest restoration on agricultural landscapes: Effects on soil, water and biodiversity conservationVinícius Guidotti de Faria 04 February 2016 (has links)
A conversão de vegetação nativa e o uso inadequado das terras convertidas resultam em prejuízos graves para as funções e processos dos ecossistemas, impactando diretamente a provisão de serviços ambientais e o bem-estar da sociedade. Em meio ao elevado nível de degradação e fragmentação de habitats naturais, pesquisadores têm buscado alternativas para promover a sustentabilidade de paisagens modificadas pelo homem, procurando conciliar ações conservacionistas com as necessidades de produção agropecuária e do uso consciente dos recursos naturais. Para contribuir com esse tema, este trabalho apresentou uma metodologia para a priorização de áreas para restauração florestal em paisagens agrícolas. Foram utilizados indicadores biofísicos (perda de solo, escoamento superficial e conectividade da paisagem) e técnicas de modelagem espacial para analisar o efeito de cenários alternativos de uso do solo sobre a conservação do solo, da água e da biodiversidade. Foram criados dois grupos de cenários, sendo que um grupo apresenta cenários com diferentes quantidades e arranjos espaciais da cobertura florestal na paisagem, e outro grupo se refere à cenários com diferentes tamanhos de faixas marginais florestadas no entorno da rede de drenagem. Os resultados do primeiro grupo de cenários demonstraram que o arranjo espacial da cobertura florestal influenciou significativamente a perda de solo e o escoamento superficial, mas não apresentou efeitos significativos para a conectividade da paisagem, que se mostrou dependente apenas da quantidade de cobertura florestal. As maiores sinergias entre os indicadores analisados foram expressas a partir da aplicação conjunta de boas práticas agrícolas e a restauração florestal de áreas críticas para conservação do solo e da água, demonstrando a complementariedade dessas ações no manejo de paisagens agrícolas. Quanto ao segundo grupo de cenários, os resultados demonstraram a influência positiva do tamanho da faixa florestada na capacidade de retenção de sedimentos das zonas ripárias e na conectividade da paisagem, de modo que os melhores resultados foram obtidos com o total recobrimento das Áreas de Preservação Permanente (APPs) por florestas. Observou-se que a quantidade de cobertura florestal influenciou positivamente a capacidade de retenção de sedimentos das APPs, sendo determinante no comportamento dessas áreas como fonte ou filtro de sedimentos para os canais de drenagem. De forma geral, os resultados apresentados neste trabalho demonstraram o potencial de estratégias conservacionistas e de restauração florestal em paisagens agrícolas, ao mesmo tempo que reforçaram as necessidades de planejamento e da inclusão de áreas de produção agropecuária no manejo de paisagens. Em um cenário atual de implementação da Lei de Proteção da Vegetação Nativa e de exigências mais brandas para recomposição de APPs e Reservas Legais em propriedades privadas, os resultados sugerem que apenas as ações de comando e controle podem não ser suficientes para promover a provisão de serviços ambientais e a conservação da biodiversidade em paisagens agrícolas. Desse modo, recomenda-se que haja uma desvinculação do que está previsto em lei com o conceito de paisagens sustentáveis, pois apenas a adequação legal de propriedades rurais pode não ser capaz de assegurar o fornecimento de bens e serviços à sociedade. / The conversion of native vegetation and the inappropriate use of converted land have resulted in severe damage to the natural ecosystem functions and processes, affecting the provision of environmental services and the welfare of society. Due to the high level of degradation and fragmentation of natural habitats, researchers have sought alternatives to promote the sustainability of human modified landscapes, aiming to reconcile conservation actions with the agricultural production needs and the conscious use of natural resources. To contribute to this theme, this thesis presented a methodology for prioritizing areas for forest restoration on agricultural landscapes. Biophysical indicators (soil loss, runoff and landscape connectivity) and spatial modeling techniques were used to analyze the effects of alternative scenarios of land use on the conservation of soil, water and biodiversity. These effects were analyzed on two groups of scenarios, wherein one group presents scenarios with different amounts and spatial arrangements of forest cover on the landscape, and another group refers to scenarios with different sizes of forested riparian buffer zones. The results of the first group of scenarios showed that the spatial arrangement of the forest cover significantly influenced the soil loss and runoff, but did not significantly affect the landscape connectivity, which proved to be dependent only by the amount of forest cover. The highest synergies between the analyzed indicators were expressed with the joint application of best management practices and forest restoration of critical areas for soil and water conservation, demonstrating the complementarity of these actions in the management of agricultural landscapes. Considering the second group of scenarios, the results demonstrated the positive influence of the size of forested riparian buffers on sediment retention capacity of riparian areas and landscape connectivity, and the best results were obtained with the total coverage of the Areas of Permanent Preservation (APPs) by forests. It was observed that the amount of forest cover positively influenced the sediment retention capacity of APPs and determined the behavior of these areas as sediment filter or source for stream channels. Overall, the results presented in this thesis demonstrated the potential of conservation and forest restoration strategies on agricultural landscapes, while it reinforced the needs for planning and for the inclusion of agricultural production areas in landscape management strategies. On current expectations for the implementation of the new Brazilian Forest Act and softer requirements for restoration of APPs and Legal Reserves on private properties, the results suggest that only the command and control actions may not be sufficient to promote the provision of environmental services and biodiversity conservation on agricultural landscapes. Therefore, we recommend the detachment from what is required by law to the concept of sustainable landscapes, because only the legal compliance of rural properties may not be able to ensure the supply of goods and services to society.
|
26 |
High-resolution Permafrost Distribution Modelling for the Central and Southern Yukon, and Northwestern British Columbia, CanadaBonnaventure, Philip P. January 2011 (has links)
Basal Temperature of Snow (BTS) measurements were used as the primary inputs to a high resolution (30 x 30 m grid cells) empirical-statistical regional permafrost probability model for the southern and central Yukon, and northernmost British Columbia (59° - 65°N). Data from seven individual study areas distributed across the region were combined using a blended distance decay technique, with an eighth area used for validation. The model predictions are reasonably consistent with previous permafrost maps for the area with some notable differences and a much higher level of detail. The modelling gives an overall permafrost probability of 52%. North of 62°N, permafrost becomes more extensive in the lowland areas whereas farther south permafrost is typically common only above treeline.
Significant differences exist between the mountain environments of the Yukon and the Swiss Alps where the BTS method originated and as a result different modelling approaches had to be developed. This work therefore: (1) develops additional explanatory variables for permafrost probability modelling, the most notable of which is equivalent elevation, (2) confirms the use of ground truthing as a requirement for empirical-statistical modelling in the Yukon and (3) uses a combination of models for the region in order to spatially predict between study areas.
The results of this thesis will be of use to linear infrastructure route-planning, geohazard assessment and climate change adaptation strategies. Future work employing the model will allow the effects of scenario-based climate warming to be examined.
|
27 |
Intercomparaison et développement de modèles statistiques pour la régionalisation du climat / Intercomparison and developement of statistical models for climate downscalingVaittinada ayar, Pradeebane 22 January 2016 (has links)
L’étude de la variabilité du climat est désormais indispensable pour anticiper les conséquences des changements climatiques futurs. Nous disposons pour cela de quantité de données issues de modèles de circulation générale (GCMs). Néanmoins, ces modèles ne permettent qu’une résolution partielle des interactions entre le climat et les activités humaines entre autres parce que ces modèles ont des résolutions spatiales souvent trop faibles. Il existe aujourd’hui toute une variété de modèles répondant à cette problématique et dont l’objectif est de générer des variables climatiques à l’échelle locale àpartir de variables à grande échelle : ce sont les modèles de régionalisation ou encore appelés modèles de réduction d’échelle spatiale ou de downscaling en anglais.Cette thèse a pour objectif d’approfondir les connaissances à propos des modèles de downscaling statistiques (SDMs) parmi lesquels on retrouve plusieurs approches. Le travail s’articule autour de quatre objectifs : (i) comparer des modèles de réduction d’échelle statistiques (et dynamiques), (ii) étudier l’influence des biais des GCMs sur les SDMs au moyen d’une procédure de correction de biais, (iii) développer un modèle de réduction d’échelle qui prenne en compte la non-stationnarité spatiale et temporelle du climat dans un contexte de modélisation dite spatiale et enfin, (iv) établir une définitiondes saisons à partir d’une modélisation des régimes de circulation atmosphérique ou régimes de temps.L’intercomparaison de modèles de downscaling a permis de mettre au point une méthode de sélection de modèles en fonction des besoins de l’utilisateur. L’étude des biais des GCMs révèle une influence indéniable de ces derniers sur les sorties de SDMs et les apports de la correction des biais. Les différentes étapes du développement d’un modèle spatial de réduction d’échelle donnent des résultats très encourageants. La définition des saisons par des régimes de temps se révèle être un outil efficace d’analyse et de modélisation saisonnière.Tous ces travaux de “Climatologie Statistique” ouvrent des perspectives pertinentes, non seulement en termes méthodologiques ou de compréhension de climat à l’échelle locale, mais aussi d’utilisations par les acteurs de la société. / The study of climate variability is vital in order to understand and anticipate the consequences of future climate changes. Large data sets generated by general circulation models (GCMs) are currently available and enable us to conduct studies in that direction. However, these models resolve only partially the interactions between climate and human activities, namely du to their coarse resolution. Nowadays there is a large variety of models coping with this issue and aiming at generating climate variables at local scale from large-scale variables : the downscaling models.The aim of this thesis is to increase the knowledge about statistical downscaling models (SDMs) wherein there is many approaches. The work conducted here pursues four main goals : (i) to discriminate statistical (and dynamical) downscaling models, (ii) to study the influences of GCMs biases on the SDMs through a bias correction scheme, (iii) to develop a statistical downscaling model accounting for climate spatial and temporal non-stationarity in a spatial modelling context and finally, (iv) to define seasons thanks to a weather typing modelling.The intercomparison of downscaling models led to set up a model selection methodology according to the end-users needs. The study of the biases of the GCMs reveals the impacts of those biases on the SDMs simulations and the positive contributions of the bias correction procedure. The different steps of the spatial SDM development bring some interesting and encouraging results. The seasons defined by the weather regimes are relevant for seasonal analyses and modelling.All those works conducted in a “Statistical Climatologie” framework lead to many relevant perspectives, not only in terms of methodology or knowlegde about local-scale climate, but also in terms of use by the society.
|
28 |
Modelling the Cross-Country Trafficability with Geographical Information SystemsGumos, Aleksander Karol January 2005 (has links)
<p>The main objectives of this work were to investigate Geographical Information Systems techniques for modelling a cross-country trafficability. To accomplished stated tasks, reciprocal relationships between the soil deposits, local hydrology, geology and geomorphology were studied in relation to the study area in South-Eastern Sweden.</p><p>Growing awareness of nowadays users of GIS in general is being concentrated on understanding an importance of soil conditions changed after cross-country trafficability. Therefore, in this thesis, constructing of the Soil Knowledge Database introduced to the genuine geological soil textural classes a new, modified geotechnical division with desirable for off-road ground reasoning measurable factors, like soil permeability, capillarity or Atterberg’s consistency limits.</p><p>Digital Elevation Model, the driving force for landscape studies in the thesis, was carefully examined together with the complementary datasets of the investigated area. Testing of the elevation data was done in association to the hydrological modelling, which resulted with the Wetness Index map. The three distinguishable soil wetness conditions: dry, moist and wet, were obtained, and used consequently for creation of the static ground conditions map, a visible medium of soils susceptibility to for example machine compaction.</p><p>The work resulted with a conceptual scheme for cross-country trafficability modelling, which was put into effect while modeling in GIS. As a final outcome, by combining all processed data together, derivatives were incorporated and draped over the rendered 3D animating scene. A visually aided simulation enabled to concretized theoretical, hypothetical and experimental outcomes into one coherent model of apprised under Multicriterial Evaluation techniques standardized factor maps for ground vehicle maneuverability. Also further steps of research were proposed.</p>
|
29 |
Modelling the Cross-Country Trafficability with Geographical Information SystemsGumos, Aleksander Karol January 2005 (has links)
The main objectives of this work were to investigate Geographical Information Systems techniques for modelling a cross-country trafficability. To accomplished stated tasks, reciprocal relationships between the soil deposits, local hydrology, geology and geomorphology were studied in relation to the study area in South-Eastern Sweden. Growing awareness of nowadays users of GIS in general is being concentrated on understanding an importance of soil conditions changed after cross-country trafficability. Therefore, in this thesis, constructing of the Soil Knowledge Database introduced to the genuine geological soil textural classes a new, modified geotechnical division with desirable for off-road ground reasoning measurable factors, like soil permeability, capillarity or Atterberg’s consistency limits. Digital Elevation Model, the driving force for landscape studies in the thesis, was carefully examined together with the complementary datasets of the investigated area. Testing of the elevation data was done in association to the hydrological modelling, which resulted with the Wetness Index map. The three distinguishable soil wetness conditions: dry, moist and wet, were obtained, and used consequently for creation of the static ground conditions map, a visible medium of soils susceptibility to for example machine compaction. The work resulted with a conceptual scheme for cross-country trafficability modelling, which was put into effect while modeling in GIS. As a final outcome, by combining all processed data together, derivatives were incorporated and draped over the rendered 3D animating scene. A visually aided simulation enabled to concretized theoretical, hypothetical and experimental outcomes into one coherent model of apprised under Multicriterial Evaluation techniques standardized factor maps for ground vehicle maneuverability. Also further steps of research were proposed.
|
30 |
Impacts écologiques des formes d'urbanisation : modélisations urbaines et paysagères / Ecological impacts of urban forms : urban and landscape modellingBourgeois, Marc 11 December 2015 (has links)
L’accélération du processus d’urbanisation, constatée à l’échelle mondiale depuis les dernières décennies, conduit à une artificialisation progressive des milieux naturels. La construction d’infrastructures de transport ou de nouveaux bâtiments fragmente les paysages de manière irréversible et cause une réduction des habitats écologiques et de leur connectivité. Le maintien de la fonctionnalité des réseaux écologiques, s’intègre désormais dans les politiques d’aménagement du territoire ou d’urbanisme soucieuses de la préservation de la biodiversité.En se focalisant plus particulièrement sur les évolutions urbaines à l’horizon 2030 dans l’Aire Urbaine de Besançon (développement résidentiel et variations de trafic routier), cette thèse cherche à évaluer l’impact potentiel des formes d’urbanisation sur la connectivité des réseaux écologiques des espèces animales. Ce travail de recherche privilégie l’approche par la modélisation en s’inscrivant à la fois dans le champ de la géographie théorique et quantitative et de l’écologie du paysage.L’application de cette démarche se fait en trois étapes : (1) simuler le développement résidentiel et ses évolutions de trafic associées à l’horizon 2030, à l’aide de cinq scénarios prospectifs présentant des formes urbaines différenciées ; (2) modéliser les réseaux écologiques de plusieurs espèces animales avec des graphes paysagers construits à partir de cartes d’occupation du sol et de données écologiques ; et (3) évaluer les impacts potentiels de chaque scénario sur les réseaux écologiques à partir de ces graphes à l’aide de métriques de connectivité, par mesure de la perte de connectivité imputable à chaque scénario de développement résidentiel.Les résultats obtenus montrent que les formes de villes denses et compactes, contrairement aux villes étalées, sont celles qui favorisent le mieux le maintien des connectivités écologiques pour la plupart des groupes d’espèces analysés. Des analyses plus approfondies mettent en avant la contribution importante des variations de trafic aux impacts écologiques de chaque scénario.D’après les analyses de sensibilité effectuées, le modèle utilisé est robuste, ce qui montre l’intérêt de la modélisation dans le processus d’aide à la décision pour la protection environnementale et la planification urbaine afin de penser la ville de demain de manière durable. / The global increase of urbanization during the past decades have induced a progressive artificialization of natural environments. The building of transport infrastructures and new housings causes a landscape fragmentation in an irreversible way and a strong decrease of the connectivity of ecological habitats. Maintaining the functionality of ecological networks is becoming a major goal of sustainable urban planning policies. With a special focus on urban evolutions in the horizon 2030 in the urban area of Besançon in eastern France (residential development and road traffic evolutions), this thesis aims to assess the potential impact of urban forms on landscape connectivity of animal species’ ecological networks. This research work promotes a modelling approach both on the field of theoretical and quantitative geography and landscape ecology.This approach follows three main steps: (1) simulating residential development and its associated road traffic changes using five prospective scenarios of differentiated urban forms; (2) modelling landscape graphs of various animal species using land-cover maps and ecological data; (3) assessing the potential impacts of each scenario on ecological networks from these graphs using connectivity metrics, with measures of the connectivity decrease attributable to each residential development scenario. Contrary to sprawled cities, the results show that compact and dense urban forms best promote the maintenance of ecological connectivity for the majority of species groups. Further analysis highlights the great contribution of road traffic evolutions regarding the ecological impacts of each scenario.According to some sensitivity analysis, the model used is quite robust. It demonstrates the interest of modelling in the decision-making process for environmental conservation and urban planning to think out the city of tomorrow in a sustainable way.
|
Page generated in 0.1147 seconds