• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 48
  • 41
  • 28
  • 17
  • 9
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 456
  • 113
  • 54
  • 47
  • 47
  • 38
  • 36
  • 35
  • 33
  • 30
  • 30
  • 30
  • 29
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Portable X-Ray Fluorescence Spectrometer with High Sensitivity / 高感度ポータブル蛍光X線分光器

BOLORTUYA, Damdinsuren 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21765号 / 工博第4582号 / 新制||工||1714(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 河合 潤, 教授 神野 郁夫, 准教授 奥田 浩司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
262

Analytical Approaches in Investigating the Kinetics of Water-Molecule Complexes in Tropospheric Reactions

Keeton, William J 01 July 2015 (has links) (PDF)
Ozone is a heavily monitored pollutant. Ozone is not directly emitted into the atmosphere, but rather the product of chemical reactions. Ground level ozone occurs when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react with each other in the presence of sunlight. The primary precursors of ozone are anthropogenically emitted, and as a result, tropospheric ozone has cost millions of dollars in damages and has hurt the health of countless people. This dissertation is a collection of work that aims to provide insight into atmospheric reactions that result in tropospheric ozone and the instrumentation to study such reactions. While these reactions are well studied, this research is novel in its attempt to understand water vapor's influence in tropospheric ozone reactions. As the troposphere continues to get warmer and wetter from global climate change, water vapor will play a larger role in tropospheric reactions, which in turn may perturb the global reactions. Work is presented on the self-reaction of β-hydroxyethyl peroxy radical (β-HEP), an ozone precursor, and the increase in reaction rate catalyzed by water vapor. β-HEP serves as a model system for understanding the roles of water vapor in perturbing the kinetics and product branching ratio of ozone forming reactions. The self-reaction rate coefficient of β-HEP was investigated between 274-296 K with 1.0 × 1015 to 2.5 × 1017 molecules cm-3 of water vapor at 200 Torr total pressure by slow-flow laser flash photolysis coupled with UV time-resolved spectroscopy and long-path, wavelength-modulated, diode-laser spectroscopy. The overall rate constant is expressed as the product of temperature-dependent and water vapor-dependent terms giving k(T,H2O) = 7.8 × 10-14(e8.2 (±2.5) kJ/RT )(1 + 1.4 × 10-34 × e92 (±11) kJ/RT [H2O]). The results suggest that formation of a β-HEP-H2O complex is responsible for the observed water vapor enhancement of the self-reaction rate coefficient. A new discharge flow mass-spectrometer was engineered in collaboration with the California Institute of Technology and NASA's Jet Propulsion Laboratory. This instrument allows for rapid study of water vapor influence on the kinetics of atmospheric reactions. This instrument will be used in further studying the β-HEP + NO reaction as a function of water vapor concentration.
263

Development of a Low Energy Ion Mass Spectrometer

Karapetsas, Spyridon 02 1900 (has links)
<p> The interaction mechanisms of an ion beam with a solid target are identified. Basic parameters associated with ion scattering, charge neutralization, inelastic energy losses and secondary ion production are described. Low energy (1-20 kev) experimental studies on these topics are reviewed. A low energy ion mass spectrometer is described. The ion beam is generated by an existing kev ion accelerator and is directed to a newly constructed UHV target chamer. The energy and angular distributions of the backscattered particles are measured with a hemispherical electrostatic analyser and a channeltron detector. A high precision goniometer allows target rotation about two perpendicular axes by angles of 180° and 90° with an accuracy and repeatability of 0.1°. The interaction chamber is bakeable to 250°c and was designed for an ultimate pressure of 10^-11 torr. The data acquisition system chamber scans the energy spectrum automatically so that the radiation dosage at the target is equalized for all channels. </p> / Thesis / Master of Engineering (MEngr)
264

Assembly and Testing of the Neutral Particle Spectrometer (NPS) Detector

Tiwari, Pramita 05 June 2023 (has links)
No description available.
265

Laser Plasma Radiation Studies For Droplet Sources In The Extreme Ultraviolet

Kamtaprasad, Reuvani 01 January 2010 (has links)
The advancement of laboratory based Extreme Ultraviolet (EUV) radiation has escalated with the desire to use EUV as a source for semiconductor device printing. Laser plasmas based on a mass-limited target concept, developed within the Laser Plasma Laboratory demonstrate a much needed versatility for satisfying rigorous source requirements. This concept produces minimal debris concerns and allows for the attainment of high repetition rates as well as the accommodation of various laser and target configurations. This work demonstrates the generation of EUV radiation by creating laser plasmas from mass-limited targets with indium, tin, and antimony doped droplets. Spectral emission from the laser plasmas is quantified using a flat-field spectrometer. COWAN code oscillator strength predications for each of the dopants were convolved with narrow Gaussian functions creating synthetic spectra for the EUV region between 10 nm - 20 nm. A preliminary comparison was made between the theoretical spectra and experimental results. From this comparison, ion stage transitions for each of the hot dense plasmas generated were assessed.
266

Infrared photophysics of gas phase ions in a Fourier transform ion cyclotron resonance mass spectrometer

Uechi, Guy Takeo January 1993 (has links)
No description available.
267

Using the R-Function to Study the High-Resolution Spectrometer (HRS) Acceptance for the 12 GeV Era Experiment E12-06-114 at JLAB

Hamad, Gulakhshan M. January 2017 (has links)
No description available.
268

Rapid Assessment of Sugars and Organic Acids in Tomato Paste Using a Portable Mid-Infrared Spectrometer and Multivariate Analysis

Zhang, Congcong, Zhang 22 September 2016 (has links)
No description available.
269

Improvement of Gastroparesis Management By Addressing Challenges in Drug Metabolism: Studies with Metabolite Identification, Reaction Phenotyping and In Vitro Drug-Drug Interactions

Youssef, Amir Samaan Bishara January 2013 (has links)
Gastroparesis is a disorder characterized by delayed gastric emptying due to chronic abnormal gastric motility. Prokinetic agents such as domperidone and metoclopramide are the cornerstone in treatment of gastroparesis. Although these medications have been used for decades, essential information about their metabolism is not available. Lack of knowledge about the metabolites formed in the body upon administration of the aforementioned medications as well as the enzymes involved in their metabolism limits key information needed to make sound medical decisions. Accurate and comprehensive identification of the metabolites along with reaction phenotyping of prokinetic agents will ensure safe and effective use of these drugs and hence enhance the clinical outcome. The thesis starts with an introductory chapter which comprises a comprehensive literature review on gastroparesis and the available pharmacological treatment options. The chapter also emphasizes the importance of metabolic profiling of prokinetic agents (domperidone and metoclopramide) and its impact on enhancing the safety and efficacy of these medications. Chapter 2 of this project was aimed to determine phase oxidative and conjugative metabolites of domperidone in the plasma and urine of gastroparesis patients using tandem mass spectrometry. First, the metabolites were identified in in-vitro human subcellular fractions. The knowledge gained in this experiment helped identifying the metabolites in the biological fluids of patients. In total, 12 metabolites including 7 new metabolites were identified, 5 of which were not reported previously. Chapter 3 aimed to identify the cytochrome P450 (CYP) enzymes responsible for the metabolism of metoclopramide. The parent depletion approach was used and a novel LC-MS/MS method was developed and validated to enable metoclopramide quantification. CYP2D6 was showed to the predominant isoform in metoclopramide metabolism; other isoforms also contribute to a minor extent. Chapter 4 discusses the possibility of potential drug-drug interaction (DDI) in the current management practice of gastroparesis. We identified and investigated some frequently used drug combinations that are known to share common metabolic pathways. Domperidone in combination with pioglitazone and ondansetron was evaluated. Results showed that pioglitazone inhibited domperidone metabolism in-vitro. Our experiments did not predict a DDI for the domperidone - ondansetron combination. In summary, the ultimate goal of this thesis was to improve the management of gastroparesis by increasing information about the metabolic disposition of prokinetic agents and to investigate the magnitude of putative drug combinations. The knowledge provided by this work will help in making more effective and less hazardous clinical decisions which will ultimately lead to more successful gastroparesis management. / Pharmaceutical Sciences
270

Variation of the Carbon Isotope Composition in Some Natural Processes

Taylor, Edwin William 10 1900 (has links)
The variation in the carbon isotope composition of the cap rock of Texas and Louisiana sulphur wells was investigated by means of a simultaneous collection mass spectrometer. These rocks showed anomalously large depletions in C-13. The isotope depletion in the decarboxylation of pyruvic acid, both by chemical means and by bacteria, was measured and the isotope composition of the carbon dioxide released was found to be similar to that of the cap rock. The hypothesis is advanced that the carbonate of the cap rock may have originated by the precipitation of carbon dioxide released in the bacterial decarboxylation of an organic substrate. / Thesis / Master of Science (MSc)

Page generated in 0.0546 seconds