Spelling suggestions: "subject:"spectroscopie d’émissions optique"" "subject:"pectroscopie d’émissions optique""
1 |
Utilisation de l'interférométrie optique et de la spectroscopie optique d'émission pour étudier un mélange gazeux Argon/CO2 à haute température / Use of optical interferometry and the optical emission spectroscopy to study a gas mixture argon/CO 2 at high temperatureKesseng, Karl Patrick 16 December 2010 (has links)
Le présent travail de thèse a consisté en un diagnostic d’une colonne de plasma d’un mélange d’argon et de CO2, créée par une décharge éclatant dans un réacteur cylindrique, entre deux électrodes pointues en tungstène, sous une tension d’amorçage de 10KV, un courant de 100 à 300mA, et à pression atmosphérique. Le diagnostic du plasma a été réalisé à l’aide d’un laser Hélium Néon (raie 632.8nm), d'un interféromètre de Mach-Zehnder et d’un spectromètre à fibre optique. Après calcul de la composition du mélange d’Argon et de CO2 en fonction de la température par la méthode de minimisation de l’enthalpie libre de Gibbs, on a déterminé la densité des espèces. Utilisant les propriétés des particules soumises à une onde électromagnétique, et la relation de Gladstone Dale qui lie l’indice de Réfraction d’un Gaz à sa densité et à sa température, nous avons calculé l’évolution de la réfractivité du milieu. Ensuite nous l’avons mesurée pour obtenir les profils radiaux de température par la transformée de Fourier et l’inversion d’Abel, des cartes de phase obtenues par interférométrie optique. Ce travail a été complété par une analyse par spectroscopie optique moléculaire d’émission. Utilisant le système de Swan de la molécule C2 (d3!g – a3!u) comme pyromètre, notamment les bandes 01(5635.2 Å) et 12 (5585.5 Å), nous avons déterminé les températures vibrationnelles et rotationnelles du plasma. Un programme en FORTRAN a été mis au point, pour la simulation des bandes moléculaires. Nous avons diagnostiqué la colonne de plasma sur toute sa largeur et dressé un profil de température radial. Les températures vibrationnelles et rotationnelles nous ont permis de calculer l’écart à l’équilibre thermodynamique. / This work of thesis consisted of a diagnosis of a column of plasma of a mixture of argon and CO2 created by a discharge bursting in a cylindrical engine, between two pointed tungsten electrodes, under a voltage of 10KV, a current of 100 to 300mA, at atmospheric pressure. The diagnosis of plasma was carried out using a laser Helium Neon (line 632.8nm), of an interferometer of Mach-Zehnder and a spectrometer with optical fibre. After calculation of the mix design of Argon and CO2 according to the temperature by the method of minimization of the free enthalpy of Gibbs, one determined the density of the species. Using the properties of the particles subjected to an electromagnetic wave, and the relation of Gladstone Dale which binds the index of Refraction of a Gas to its density and its temperature, we calculated the evolution of the refractivity of the medium. Then we measured it to obtain the radial profiles of temperature by the Fourier transform and the inversion of Abel, of the charts of phase obtained by optical interferometry. This work was supplemented by an analysis by molecular optical spectroscopy of emission. Using the system of Swan of the molecule C2 (d3!g – a3!u) like pyrometer, in particular the bands 01(5635.2 Å) and 12 (5585.5 Å), we determined the vibrational and rotational temperatures in the plasma. A Fortran program was developed, for the simulation of the molecular bands. We diagnosed the column of plasma over all its width and drew up a radial profile of temperature. The calculation of the vibrational and rotational temperatures enabled us to calculate the variation with thermodynamic balance.
|
2 |
Caractérisation d’un plasma radiofréquence d’argon avec injection pulsée de gaz en vue d’une application au dépôt de couches minces nanocomposites.Sadek, Thibault 08 1900 (has links)
Les matériaux (nano)composites font partie intégrante de l’industrie de l’aéronautique et de l’espace depuis plus de 50 ans. De nos jours, le concept de matériaux multifonctionnels combinant diverses propriétés pour réaliser des objectifs de performance multiples en un seul et unique système est devenu une exigence pour le développement de surfaces innovantes, et ce, pour une vaste gamme d’applications technologiques. Cependant, pour plusieurs applications, un des principaux verrous est l’obtention de revêtements formés de nanoparticules isolées (non-agrégées) et de petite taille (<10 nm) dispersées de manière contrôlée dans une matrice. Dans ce contexte, une nouvelle méthode de synthèse souple, verte, sécuritaire et industrialisable a récemment été proposée. Celle-ci repose sur un réacteur-injecteur de nanoparticules et permet de synthétiser des nanoparticules à partir de précurseurs organométalliques liquides juste avant de les injecter dans un réacteur de dépôt par plasma en limitant les phénomènes d’agglomération associés à la vaporisation de gouttelettes et en évitant les problèmes de toxicité éventuelle en lien avec la manipulation de nanoparticules avant le dépôt. Cependant, contrairement aux procédés de dépôt par plasma habituels qui s’effectuent la plupart du temps à pression constante, la conception du réacteur-injecteur de nanoparticules implique inévitablement une dynamique temporelle complexe associée à des variations assez brutales de la pression dans le réacteur à plasma. À l’évidence, ces variations temporelles de pressions vont se répercuter sur l’évolution temporelle des propriétés fondamentales du plasma telles que la densité et la température des électrons. Dans ce travail de maîtrise, nous avons eu recours à la spectroscopie optique d’émission couplée aux prédictions de modèles collisionnels-radiatifs pour déterminer des conditions opératoires du réacteur-injecteur dans un plasma rf d’argon minimisant ces variations d’une part, et permettant de mieux comprendre leurs implications sur la température des électrons, d’autre part. Ces travaux serviront ainsi d’effet levier à des études plus complexes en présence de précurseurs et de nanoparticules. / (Nano) Composite materials have been an integral part of the aeronautics and space industry for more than 50 years. Nowadays, the concept of multifunctional materials combining various properties to achieve multiple performance objectives in a single system has become a prerogative in the development of innovative surfaces for a wide range of technological applications. However, for several applications, one of the main challenges is the production of coatings formed of isolated (non-aggregated) and small (<10 nm) nanoparticles dispersed in a controlled manner in a matrix. In this context, a new flexible, green, safe and scalable method of synthesis has recently been proposed. It is based on a reactor-injector of nanoparticles and can synthesize nanoparticles from liquid organometallic precursors just before injecting them into a plasma deposition reactor by limiting the agglomeration phenomena associated with the vaporization of droplets and by avoiding problems of possible toxicity related to the manipulation of nanoparticles before the deposit. However, unlike conventional plasma deposition processes, which are usually carried out at constant pressure, the design of the reactor-injector of nanoparticles inevitably involves a complex temporal dynamic associated with rather sudden changes in the pressure in the plasma reactor. Obviously, these temporal variations of pressures will affect the temporal evolution of the fundamental properties of the plasma such as the density and the temperature of the electrons. In this master work, we used optical emission spectroscopy coupled with the predictions of collisional-radiative models to determine operating conditions of the reactor-injector in an argon rf plasma minimizing these variations on the one hand, and to better understand their implications on the electron temperature, on the other hand. This work can thus be expected to serve as building blocks for more complex studies in the presence of precursors and nanoparticles.
|
3 |
Micro-décharges en milieu électrolytique aqueux et leur interaction avec les matériaux : le cas du procédé d'oxydation par plasma électrolytique (PEO) / Microdischarges in aqueous electrolytic and their interaction with materials : the case of Plasma Electrolytic Oxidation (PEO)Nominé, Alexandre 25 September 2014 (has links)
L’Oxydation par Plasma Electrolytique (PEO) est un procédé de traitement de surface des alliages métalliques légers (Al, Mg, Ti) qui permet de faire croître des couches protectrices d’oxydes épaisses et dures sur ces matériaux. Pour dépasser les limites de l’anodisation, le procédé PEO repose sur la génération de micro-Décharges anodiques résultant du claquage de la couche diélectrique dans un électrolytique aqueux sous l’effet d’une densité de courant ou d’une différence de potentiel élevées (typ. 20 A/dm2 ; 700 V). Les objectifs de ce travail sont d’une part d’étudier les caractéristiques des micro-Décharges (composition chimique, densité et température électronique) et leur comportement macroscopique (conditions d’amorçage, densité surfacique, taille, durée de vie), et d’autre part de corréler ces études aux mécanismes de croissance des couches d’oxydes dans différentes conditions électriques (forme du courant bipolaire pulsé) et de composition d’électrolytes alcalins. Ces études couplées ont permis notamment de mettre en évidence que le passage en régime d’autorégulation (précédemment identifié) s’accompagne de la croissance d’une couche spongieuse, vraisemblablement amorphe, autour et dans les fissures de structures composées d’alumine cristallisée et résultant des claquages diélectriques. De même, la caractérisation de couches traitées PVD + PEO a conduit à améliorer la compréhension de certains mécanismes de claquage intervenant dans le procédé PEO, et en particulier les processus à l’interface couche d’oxydes - substrat. Enfin, une étude spécifique des micro-Décharges cathodiques (inhabituellement observées en PEO) a conduit à proposer des mécanismes de claquage de la couche diélectrique durant cette demi-Période cathodique du courant. Il a en outre été montré que, bien que l’alternance négative du courant soit nécessaire pour améliorer la croissance des couches d’oxydes, les micro-Décharges cathodiques ont un effet néfaste sur celle-Ci. Il est ainsi nécessaire de contrôler la forme d’onde du courant appliqué afin d’éviter la génération de telles décharges / Plasma Electrolytic Oxidation (PEO) is a surface treatment of light metallic alloys (e.g Al, Mg, Ti) that makes possible to grow thick and hard oxide protective coating on those materials. To overcome the limitations of anodizing the PEO process takes benefit of anodic micro-Discharges resulting from the dielectric breakdown in an aqueous electrolyte under a high applied current density or voltage (typ. 20 A/dm2; 700 V). Therefore this work aims first at studying both the macroscopic parameters (breakdown conditions, surface density, lifetime, size) of such micro-Discharges and their behavior, and second to correlate these studies to the growth mechanisms of the oxide coatings within various electrical (applied current waveform) conditions and alkaline electrolyte composition. These coupled studies allowed us to evidence that the transition from arc regime to soft regime (previously determined) corresponds to the growth of a loose spongy silicon-Rich phase which is likely amorphous, inside and around cracks of the pancake structures issued from the dielectric breakdown and composed of crystalline alumina. Meanwhile, analyses of combined PVD + PEO coatings lead us to improve our understanding of some breakdown mechanisms occurring during the PEO process, with a particular attention to the phenomena at the coating-Substrate interface. Finally, a particular study of cathodic micro-Discharges (unusually observed in PEO) allowed us to propose breakdown mechanisms of the dielectric layer during that negative half-Period of the current. Besides it has been shown that those cathodic micro-Discharges are detrimental to the layer growth though the cathodic half-Period of the current is mandatory to improve the coating growth. It is therefore necessary to manage the current waveform to avoid creating such detrimental discharges
|
4 |
Modification des propriétés optiques de nanofils à base de GaN par plasma N2/O2Ferreira, Jason 07 1900 (has links)
Une sonde électrostatique de Langmuir cylindrique a été utilisée pour caractériser une post-décharge d’un plasma d’ondes de surface de N2-O2 par la mesure de la densité des ions et électrons ainsi que la température des électrons dérivée de la fonction de distribution en énergie des électrons (EEDF). Une densité maximale des électrons au centre de la early afterglow de l’ordre de 1013 m-3 a été déterminée, alors que celle-ci a chuté à 1011 m-3 au début de la late afterglow. Tout au long du profil de la post-décharge, une densité des ions supérieure à celle des électrons indique la présence d’un milieu non macroscopiquement neutre. La post-décharge est caractérisée par une EEDF quasi maxwellienne avec une température des électrons de 0.5±0.1 eV, alors qu’elle grimpe à 1.1 ±0.2 eV dans la early afterglow due à la contribution des collisions vibrationnelles-électroniques (V-E) particulièrement importantes. L’ajout d’O2 dans la décharge principale entraîne un rehaussement des espèces chargées et de la température des électrons suivi d’une chute avec l’augmentation de la concentration d’O2. Le changement de la composition électrique de la post-décharge par la création de NO+ au détriment des ions N2+ est à l’origine du phénomène. Le recours à cette post-décharge de N2 pour la modification des propriétés d’émission optique de nanofils purs de GaN et avec des inclusions d’InGaN a été étudié par photoluminescence (PL). Bien que l’émission provenant des nanofils de GaN et de la matrice de GaN recouvrant les inclusions diminue suite à la création de sites de recombinaison non radiatifs, celle provenant des inclusions d’InGaN augmente fortement. Des mesures de PL par excitation indiquent que cet effet n’est pas attribuable à un changement de l’absorption de la surface de GaN. Ceci suggère un recuit dynamique induit par la désexcitation des métastables de N2 suite à leur collision à la surface des nanofils et la possibilité de passiver les défauts de surface tels que des lacunes d’azote par l’action d’atomes de N2 réactifs provenant de la post-décharge. L’incorporation d’O2 induit les mêmes effets en plus d’un décalage vers le rouge de la bande d’émission des inclusions, suggérant l’action des espèces d’O2 au sein même des nanostructures. / A cylindrical electrostatic Langmuir probe was used to characterize the flowing afterglow of a N2-O2 surface wave plasma. The spatial distribution of the number density of positive and electrons as well as the EEDF were measured. A maximum of the number density of electrons in the mid 1013 m-3 was obtained in the center of the early afterglow, while it decreased at 1011 m-3 early in the late afterglow, thus indicating non-macroscopically neutral media all along the flowing afterglow. It is characterized by an EEDF close to a Maxwellian with an electron temperature of 0.5±0.1 eV, while it increased at 1.1±0.2 eV in the early afterglow due to the contribution of important vibration-electron collisions. After addition of small amounts of O2 in the main N2 microwave discharge, the charged particles densities and electron temperature first strongly increased then decreased with increasing O2 concentration. A change in the charged population in the afterglow by the creation of NO+ to the detriment of the N2+ ions is responsible of this phenomenon. This N2 flowing afterglow was later used for plasma-induced modification of pure GaN nanowires and InGaN/GaN dot-in-a-wire heterostructures and characterized by PL. While the band edge emission from GaN nanowires and the GaN matrix of the InGaN/GaN nanowires strongly decreased due to the creation of non-radiative recombination centers in the near-surface region, the emission from the InGaN inclusions strongly increased. PL excitation measurements show that this increase cannot be explained by a plasma-induced shift of the GaN absorption edge. Instead a dynamical annealing process induced by the desexcitation of N2 metastables following their collision with the nanowire surface and the passivation of surface defects such as nitrogen vacancies by the highly reactive nitrogen atoms in the afterglow are responsible of the increase of the PL intensity. The addition of O2 gives the same results as the pure N2 treatment, but a redshift of the emission band related to the InGaN inclusions is also observed, suggesting an important contribution of the oxygen species.
|
5 |
Analyse physico-chimique de milieux liquides d’intérêt biologique exposés à des plasmas froids produits à pression atmosphérique et température ambiante / Physico-chemical analysis of liquid media of biological interest exposed to cold plasmas produced at atmospheric pressure and room temperatureGirard, Fanny 05 December 2017 (has links)
Les plasmas froids sont des gaz partiellement ionisés, très riches d’un point de vue physico-chimique. Cette propriété se retrouve dans des plasmas froids aujourd’hui générés à pression atmosphérique et température ambiante et a été mise à profit depuis une quinzaine d’années environ pour des applications biomédicales (hématologie, dermatologie, cancérologie, odontologie etc…). L’efficacité de ces plasmas froids dans le domaine de la médecine a été prouvée par de nombreuses études. Cependant, les phénomènes biologiques mis en jeu ne sont pas encore bien compris, et il primordial de savoir quels pourraient être les éventuels effets secondaires indésirables de ces milieux ionisés réactifs. Le premier niveau d’interaction des plasmas avec le vivant est celui avec les milieux liquides, qui sont présents en surface des tissus, des cellules in vivo ou en culture. Depuis une décennie, une attention particulière a donc été portée aux interactions des plasmas avec les liquides, pour apporter un niveau de compréhension supplémentaire. La compréhension de ces interactions a constitué l’axe de ce travail. Différents réacteurs à plasmas froids (générés à pression atmosphérique et température ambiante) ont été développés, notamment afin de contrôler les interactions du plasma avec l’air ambiant qui peuvent être problématiques pour les applications visées. La nature du gaz servant à initier le plasma a été modifiée, pour connaître son influence sur la réactivité chimique de la phase gaz. Pour cela, des mesures de spectroscopie d’émission optique (SEO) ont été nécessaires. Par ailleurs, de nouveaux capteurs électrochimiques et des approches méthodologiques ont été développés pour identifier et quantifier les espèces réactives de l’oxygène et de l’azote (RONS) produites dans des milieux liquides physiologiques, exposés à ces gaz ionisés. Les analyses électrochimiques ont été combinées à de la spectroscopie d’absorption UV-visible ainsi qu’à d’autres méthodes de chimie (pH-métrie/conductimétrie). Un des objectifs visés est d’établir une corrélation entre les espèces réactives générées dans la phase gaz et dans la phase liquide. Enfin, des expérimentations nous ont permis d’analyser la production des RONS dans des liquides in situ en temps réel. Les mesures de SEO montrent qu’il existe de nombreuses espèces chimiques excitées au sein des différents plasmas (NO°, HO°, O, N2+ (FNS) etc…). Les analyses de la phase liquide ont révélé la présence d’espèces stables de l’oxygène et de l’azote (H2O2, NO2-, NO3-), directement reliées aux espèces détectées dans les plasmas. De plus, les diverses méthodologies d’analyse chimique mises en place ont permis la détection et la quantification de RONS tels que l’anion peroxynitrite ONOO-. L’ensemble des résultats obtenus devrait permettre d’appréhender de façon plus fine les effets induits par différents plasmas froids dans des milieux liquides physiologiques afin d’établir un lien avec les études menées sur des cellules en culture et sur la peau dans le cadre d’un programme de recherche financé par l’ANR, Agence Nationale de la recherche. / Cold plasmas are partially ionized gases, very rich in a physico-chemical point of view. This property characterizes cold plasmas today generated at atmospheric pressure and ambient temperature and was used since about fifteen years approximately for biomedical applications (haematology, dermatology, cancer research, odontology etc.). The efficiency of these cold plasmas in the field of the medicine was proved by numerous studies. However, the involved biological phenomena are not still well included, and it is essential to know what could be the possible unwanted side effects of these reactive ionized gases. The first level of interaction of plasmas with living matter is the one with the liquid phase, which is present on the tissue surface, in vivo cells or in culture. For a decade, a particular attention was thus worn in the interactions of plasmas with liquids, to bring a level of additional understanding. The understanding of these interactions constituted the axis of this work. Various cold plasmas reactors (generated at atmospheric pressure and ambient temperature) were developed, in order to control the interactions of these plasmas with the ambient air which can be problematic for the aimed applications. The nature of the gas used to initiate the plasma was modified, to know its influence on the chemical reactivity of the gas phase. For that purpose, measurements of optical emissive spectroscopy (OES) were necessary. Besides, new electrochemical sensors and methodological approaches were developed in order to identify and quantify the reactive nitrogen and oxygen (RONS) produced in physiological liquid media, exposed to these ionized gases. The electrochemical analyses were combined UV-visible absorption spectroscopy as well as other methods of chemistry (pH-metry/conductimetry). One of the aimed objectives is to establish a correlation between the reactive species generated in the gas phase and in the liquid phase. Finally, experiments allowed us to analyze the production of RONS in liquids in situ and in real time. OES measurements showed that there are numerous chemical species generated in various plasmas (NO°, HO°, O, N2+ (FNS) etc.). The analyses of the liquid phase revealed the presence of stable oxygen and nitrogen species (H2O2, NO2-, NO3-), directly correlated with the species detected in plasmas. Furthermore, the diverse methodologies of chemical analysis allowed the detection and quantification of RONS such as the peroxynitrite anion ONOO-. The obtained results should allow to arrest in a finer way the effects led by various cold plasmas in physiological liquid media to establish links with the studies led on cultured cells and on skin within the framework of a research program financed by the ANR, National Agency of the Research.
|
Page generated in 0.1265 seconds