• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CONTRIBUTION A L'ETUDE DE L'INFLUENCE DE LA MOLECULE DE CO2 SUR UN PLASMA DE MELANGE Ar-CO2,<br />ETUDE EXPERIMENTALE DE LA REPARTITION RADIALE DES<br />TEMPERATURES DANS UN PLASMA Ar-CO2,

Maouhoub, Essaadia 30 May 1997 (has links) (PDF)
Ce travail comprend deux parties essentielles: une partie théorique et une partie expérimentale. La partie théorique est consacrée à la mise au point d'un formalisme numérique (méthode de Newton-Raphson) en utilisant tes lois d'équilibre de la thermodynamique pour le calcul de la composition et les propriétés thermodynamiques des plasmas thermiques. Ce calcul a été appliqué pour différentes valeurs de pourcentages de CO2 afin de mettre en évidence l'influence de cette molécule sur les propriétés thermodynamiques du plasma du mélange Ar-CO2, à la pression atmosphérique.<br />La partie expérimentale constitue la partie principale et essentielle de ce travail. Nous avons mis au point la chambre à arc stabilisé par parois (type Maecker modifié) afin de disposer d'un arc stable dans le temps. Les méthodes de diagnostic du plasma sont basées sur la spectroscopie d'émission. Deux méthodes d'interpolation (polynôme, spline) pour le lissage des points expérimentaux sont comparées. Les profils de températures d'excitation sont détermines à partir des raies atomiques (argon, carbone, oxygène) et les profils de température de rotation à partir des spectres moléculaires observés, système de Swan C2(0,0) et système violet de CN(0,0).<br />Les principaux résultats expérimentaux obtenus montrent que :<br /><br />-la composition locale du plasma n'est pas celte injectée,<br /><br />- la température augmente en fonction du courant,<br /><br />-le gradient de température diminue quand le courant augmente,<br /><br />-les formes des profils des températures d'excitation sont modifiées pour le plasma du mélange Ar-CO2<br /><br />-le gradient de température diminue quand on augmente te pourcentage de CO2,<br /><br />- la formation d'un noyau à température élevée sur l'axe de la décharge et d'un début de palier entre 7 000k et 8 500 K,<br /><br />- les températures de rotations sont vraisemblablement celtes de la périphérie.
2

Analyse de la température du gaz dans les plasmas de haute fréquence à la pression atmosphérique par spectroscopie à très haute résolution spectrale

Labelle, Francis 08 1900 (has links)
Le présent mémoire de maîtrise est consacré à une étude spectroscopique de la température du gaz dans les plasmas hors équilibre thermodynamique d’argon à la pression atmosphérique. Nous avons notamment pu extraire, à l’aide de mesures par spectroscopie optique d’émission de structures rotationnelles des systèmes OH (A2Σ+- X2Πi) et N2+ (B2Σu+- X2Σg+), la température rotationnelle d’un plasma radiofréquence en régime capacitif et d’un plasma micro-onde produit par une onde électromagnétique de surface. En comparant ces mesures à celles obtenues par l’analyse de l’élargissement des raies 2p2-1s2 et 2p3-1s2 de l’argon avec un spectromètre à très haute résolution spectrale, nous avons pu démontrer que l’équilibre rotation-translation (Trot=Tg) n’est jamais atteint dans les configurations de plasmas étudiées. Cet écart entre les deux températures est attribué à l’influence des électrons, en compétition avec les atomes neutres, imposant leurs propres températures sur la distribution des niveaux rotationnels. De plus, l’effet du flux de gaz et de l’ajout de CO2 sur le chauffage du gaz a été étudié dans un plasma micro-onde d’argon à la pression atmosphérique. Nous avons noté des changements importants dans les profils axiaux de Tg en amont et en aval de l’excitateur à onde de surface selon les conditions opératoires. Pour séparer les facteurs gouvernant le chauffage du gaz à ceux associés au dépôt de puissance par l’onde électromagnétique, nous avons normalisé nos valeurs de Tg aux intensités des émissions de l’argon liées aux transitions 2p-1s entre 700 et 900 nm. Pour des temps de résidence dans le plasma d’argon suffisamment longs (et donc de faibles débits de gaz), les valeurs de Tg normalisées montrent un comportement assez constant, ce qui indique que le chauffage s’effectue principalement de manière locale. Au contraire, pour des temps plus longs (et donc des débits de gaz plus importants), les valeurs de Tg normalisées augmentent le long de la colonne à plasma, ce qui révèle que les phénomènes de transport commencent à jouer un rôle important. On note aussi un changement de comportement à plus hauts débits de gaz dû au passage d’un régime d’écoulement laminaire à un régime turbulent. En présence de CO2, dû aux mécanismes de chauffage additionnels, les valeurs de Tg normalisées sont systématiquement plus élevées. / The present master thesis is devoted to a spectroscopic study of the gas temperature in non-thermodynamic equilibrium argon plasmas at atmospheric pressure. In particular, we were able to extract, by means of optical emission spectroscopy measurements of rotational structures of the systems OH (A2Σ+- X2Πi) and N2+ (B2Σu+- X2Σg+), the rotational temperature of a radiofrequency plasma in capacitive mode and of a microwave plasma produced by an electromagnetic surface wave. By comparing these measurements with those obtained by the analysis of line broadening from 2p2-1s2 et 2p3-1s2 of argon with an ultrahigh spectral resolution spectrometer, we were able to demonstrate that the rotational-translational equilibrium (Trot=Tg) is never achieved in the plasma configurations studied. The departure from both temperatures is ascribed to the influence of electrons competing with neutrals to impose their own temperature on the distribution of rotational levels. In addition, the effect of gas flow and addition of CO2 admixtures on the gas heating has been studied in a microwave argon plasma at atmospheric pressure. We noted significant changes in the axial profiles of Tg on the upstream and downstream plasma column according to operating conditions. To separate the factors governing the heating of gas from those associated with the deposition of power by the electromagnetic wave, we have normalized our Tg values to the intensities of the argon emissions linked to the transitions 2p-1s between 700 and 900 nm. For long enough gas residence times in the argon plasma (and therefore low gas flow rates), normalized Tg values show a fairly constant behaviour, which indicates that the heating takes place mainly locally. On the contrary, for longer times (and therefore higher gas flow rates), normalized Tg values increases along the plasma column, which reveals that transport phenomena are starting to play an important role. There is also a change in behaviour at higher gas flow rates due to the change from a laminar flow regime to a turbulent regime. In the presence of CO2 admixtures, due to additional heating mechanisms, normalized Tg values are consistently higher.
3

Analyse physico-chimique de milieux liquides d’intérêt biologique exposés à des plasmas froids produits à pression atmosphérique et température ambiante / Physico-chemical analysis of liquid media of biological interest exposed to cold plasmas produced at atmospheric pressure and room temperature

Girard, Fanny 05 December 2017 (has links)
Les plasmas froids sont des gaz partiellement ionisés, très riches d’un point de vue physico-chimique. Cette propriété se retrouve dans des plasmas froids aujourd’hui générés à pression atmosphérique et température ambiante et a été mise à profit depuis une quinzaine d’années environ pour des applications biomédicales (hématologie, dermatologie, cancérologie, odontologie etc…). L’efficacité de ces plasmas froids dans le domaine de la médecine a été prouvée par de nombreuses études. Cependant, les phénomènes biologiques mis en jeu ne sont pas encore bien compris, et il primordial de savoir quels pourraient être les éventuels effets secondaires indésirables de ces milieux ionisés réactifs. Le premier niveau d’interaction des plasmas avec le vivant est celui avec les milieux liquides, qui sont présents en surface des tissus, des cellules in vivo ou en culture. Depuis une décennie, une attention particulière a donc été portée aux interactions des plasmas avec les liquides, pour apporter un niveau de compréhension supplémentaire. La compréhension de ces interactions a constitué l’axe de ce travail. Différents réacteurs à plasmas froids (générés à pression atmosphérique et température ambiante) ont été développés, notamment afin de contrôler les interactions du plasma avec l’air ambiant qui peuvent être problématiques pour les applications visées. La nature du gaz servant à initier le plasma a été modifiée, pour connaître son influence sur la réactivité chimique de la phase gaz. Pour cela, des mesures de spectroscopie d’émission optique (SEO) ont été nécessaires. Par ailleurs, de nouveaux capteurs électrochimiques et des approches méthodologiques ont été développés pour identifier et quantifier les espèces réactives de l’oxygène et de l’azote (RONS) produites dans des milieux liquides physiologiques, exposés à ces gaz ionisés. Les analyses électrochimiques ont été combinées à de la spectroscopie d’absorption UV-visible ainsi qu’à d’autres méthodes de chimie (pH-métrie/conductimétrie). Un des objectifs visés est d’établir une corrélation entre les espèces réactives générées dans la phase gaz et dans la phase liquide. Enfin, des expérimentations nous ont permis d’analyser la production des RONS dans des liquides in situ en temps réel. Les mesures de SEO montrent qu’il existe de nombreuses espèces chimiques excitées au sein des différents plasmas (NO°, HO°, O, N2+ (FNS) etc…). Les analyses de la phase liquide ont révélé la présence d’espèces stables de l’oxygène et de l’azote (H2O2, NO2-, NO3-), directement reliées aux espèces détectées dans les plasmas. De plus, les diverses méthodologies d’analyse chimique mises en place ont permis la détection et la quantification de RONS tels que l’anion peroxynitrite ONOO-. L’ensemble des résultats obtenus devrait permettre d’appréhender de façon plus fine les effets induits par différents plasmas froids dans des milieux liquides physiologiques afin d’établir un lien avec les études menées sur des cellules en culture et sur la peau dans le cadre d’un programme de recherche financé par l’ANR, Agence Nationale de la recherche. / Cold plasmas are partially ionized gases, very rich in a physico-chemical point of view. This property characterizes cold plasmas today generated at atmospheric pressure and ambient temperature and was used since about fifteen years approximately for biomedical applications (haematology, dermatology, cancer research, odontology etc.). The efficiency of these cold plasmas in the field of the medicine was proved by numerous studies. However, the involved biological phenomena are not still well included, and it is essential to know what could be the possible unwanted side effects of these reactive ionized gases. The first level of interaction of plasmas with living matter is the one with the liquid phase, which is present on the tissue surface, in vivo cells or in culture. For a decade, a particular attention was thus worn in the interactions of plasmas with liquids, to bring a level of additional understanding. The understanding of these interactions constituted the axis of this work. Various cold plasmas reactors (generated at atmospheric pressure and ambient temperature) were developed, in order to control the interactions of these plasmas with the ambient air which can be problematic for the aimed applications. The nature of the gas used to initiate the plasma was modified, to know its influence on the chemical reactivity of the gas phase. For that purpose, measurements of optical emissive spectroscopy (OES) were necessary. Besides, new electrochemical sensors and methodological approaches were developed in order to identify and quantify the reactive nitrogen and oxygen (RONS) produced in physiological liquid media, exposed to these ionized gases. The electrochemical analyses were combined UV-visible absorption spectroscopy as well as other methods of chemistry (pH-metry/conductimetry). One of the aimed objectives is to establish a correlation between the reactive species generated in the gas phase and in the liquid phase. Finally, experiments allowed us to analyze the production of RONS in liquids in situ and in real time. OES measurements showed that there are numerous chemical species generated in various plasmas (NO°, HO°, O, N2+ (FNS) etc.). The analyses of the liquid phase revealed the presence of stable oxygen and nitrogen species (H2O2, NO2-, NO3-), directly correlated with the species detected in plasmas. Furthermore, the diverse methodologies of chemical analysis allowed the detection and quantification of RONS such as the peroxynitrite anion ONOO-. The obtained results should allow to arrest in a finer way the effects led by various cold plasmas in physiological liquid media to establish links with the studies led on cultured cells and on skin within the framework of a research program financed by the ANR, National Agency of the Research.

Page generated in 0.1391 seconds