Spelling suggestions: "subject:"apectrum sensing"" "subject:"espectrum sensing""
141 |
Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive RadiosHernandez Villapol, Jorge Luis 12 1900 (has links)
One statement that we can make with absolute certainty in our current time is that wireless communication is now the standard and the de-facto type of communication. Cognitive radios are able to interpret the frequency spectrum and adapt. The aim of this work is to be able to predict whether a frequency channel is going to be busy or free in a specific time located in the future. To do this, the problem is modeled as a time series problem where each usage of a channel is treated as a sequence of busy and free slots in a fixed time frame. For this time series problem, the method being implemented is one of the latest, state-of-the-art, technique in machine learning for time series and sequence prediction: long short-term memory neural networks, or LSTMs.
|
142 |
Spectrum Sensing in Cognitive Radios using Distributed Sequential DetectionJithin, K S January 2013 (has links) (PDF)
Cognitive Radios are emerging communication systems which efficiently utilize the unused licensed radio spectrum called spectral holes. They run Spectrum sensing algorithms to identify these spectral holes. These holes need to be identified at very low SNR (<=-20 dB) under multipath fading, unknown channel gains and noise power. Cooperative spectrum sensing which exploits spatial diversity has been found to be particularly effective in this rather daunting endeavor. However despite many recent studies, several open issues need to be addressed for such algorithms. In this thesis we provide some novel cooperative distributed algorithms and study their performance.
We develop an energy efficient detector with low detection delay using decentralized sequential hypothesis testing. Our algorithm at the Cognitive Radios employ an asynchronous transmission scheme which takes into account the noise at the fusion center. We have developed a distributed algorithm, DualSPRT, in which Cognitive Radios (secondary users) sequentially collect the observations, make local decisions and send them to the fusion center. The fusion center sequentially processes these received local decisions corrupted by Gaussian noise to arrive at a final decision. Asymptotically, this algorithm is shown to achieve the performance of the optimal centralized test, which does not consider fusion center noise. We also theoretically analyze its probability of error and average detection delay. Even though DualSPRT performs asymptotically well, a modification at the fusion node provides more control over the design of the algorithm parameters which then performs better at the usual operating probabilities of error in Cognitive Radio systems. We also analyze the modified algorithm theoretically. DualSPRT requires full knowledge of channel gains. Thus we extend the algorithm to take care the imperfections in channel gain estimates.
We also consider the case when the knowledge about the noise power and channel gain statistic is not available at the Cognitive Radios. This problem is framed as a universal sequential hypothesis testing problem. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. Asymptotic performance of the algorithm is presented. A cooperative algorithm is also designed for such a scenario.
Finally, decentralized multihypothesis sequential tests, which are relevant when the interest is to detect not only the presence of primary users but also their identity among multiple primary users, are also considered. Using the insight gained from binary hypothesis case, two new algorithms are proposed.
|
143 |
Design and analysis of common control channels in cognitive radio ad hoc networksLo, Brandon Fang-Hsuan 13 January 2014 (has links)
Common control channels in cognitive radio (CR) ad hoc networks are spectrum resources temporarily allocated and commonly available to CR users for control message exchange. With no presumably available network infrastructure, CR users rely on cooperation to perform spectrum management functions. One the one hand, CR users need to cooperate to establish common control channels, but on the other hand, they need to have common control channels to facilitate such cooperation. This control channel problem is further complicated by primary user (PU) activities, channel impairments, and intelligent attackers. Therefore, how to reliably and securely establish control links in CR ad hoc networks is a challenging problem. In this work, a framework for control channel design and analysis is proposed to address control channel reliability and security challenges for seamless communication and spectral efficiency in CR ad hoc networks. The framework tackles the problem from three perspectives: (i) responsiveness to PU activities: an efficient recovery control channel method is devised to efficiently establish control links and extend control channel coverage upon PU's return while mitigating the interference with PUs, (ii) robustness to channel impairments: a reinforcement learning-based cooperative sensing method is introduced to improve cooperative gain and mitigate cooperation overhead, and (iii) resilience to jamming attacks: a jamming-resilient control channel method is developed to combat jamming under the impacts of PU activities and spectrum sensing errors by leveraging intrusion defense strategies. This research is particularly attractive to emergency relief, public safety, military, and commercial applications where CR users are highly likely to operate in spectrum-scarce or hostile environment.
|
144 |
Contributions aux capacités de reconnaissance de l'environnement de la Radio Cognitive pour des applications mobiles à grande vitesseHassan, Kais 10 December 2012 (has links)
Les principaux objectifs des opérateurs ferroviaires visent à accroître la sécurité, réduire les coûts d’exploitation et de maintenance et augmenter l’attractivité et les bénéfices du transport ferroviaire en offrant de nouveaux services aux passagers. Ceci ne pourra être atteint que grâce à la multiplication des échanges de données entre les différents acteurs du monde ferroviaire. L’interopérabilité, l’efficacité spectrale, l’optimisation de l’usage des ressources radio et l’amélioration de la fiabilité des communications sont des exigences fortes pour les applications de télécommunication ferroviaires. Les recherches dans le domaine de la radio cognitive ont vu le jour afin de répondre aux besoins de communication de l’armée ainsi qu’aux besoins dans les secteurs de la sécurité publique. Ces domaines partagent souvent les mêmes exigences que les chemins de fers. Ainsi, la radio cognitive a montré un potentiel prometteur pour répondre aux besoins listés précédemment. Une des principales fonctionnalités d’un dispositif de radio cognitive est de prendre conscience de son environnement radioélectrique et de détecter les bandes disponibles. Trois principaux éléments définissent l’environnement de la radio cognitive : l’utilisateur, les règles d’accès au spectre radio et les domaines radio. Cette thèse met en avant plusieurs contributions relatives à la reconnaissance de l’environnement radiofréquence et la détection de bandes libres. Plus spécifiquement, ces contributions portent sur la reconnaissance par la radio cognitive de l’occupation du spectre et de la modulation des signaux présents dans les bandes analysées. Ces fonctions ont été conçues pour le contexte ferroviaire, c’est-à-dire la grande vitesse et un environnement électromagnétique difficile en présence de bruit impulsif. / An essential goal of railway operators is to increase safety, reduce operation and maintenance costs, and increase attraction and profit by offering new services to passengers. These objectives will be reached thanks to a huge increase of data fluxes exchanges between railways stakeholders and infrastructures.Interoperability, spectral efficiency, optimization of radio resource usages, and improvement of communications reliability are of significant interest for railway applications. The Cognitive Radio (CR) research has been successfully applied to meet the communication needs of the military as well as the public-safety sectors, which share many of the same needs as railway. CRs have shown significant promise to answer all of the previously listed requirements. One of the main capabilities of a CR device is to sense and finally become aware of its environment. Three major domains define the environment of the CR, namely, the user, policy, and radio domains. This thesis highlights several contributions to radio environment awareness of a CR device. More specifically, these contributions lie in the spectrum awareness and waveform awareness functions of the CR. We designed these functions for the railways context, that is, a high speed vehicular context, besides difficult electromagnetic environments resulting a heavy-tailed impulsive noise.
|
145 |
Design and Analysis of Opportunistic MAC Protocols for Cognitive Radio Wireless NetworksSu, Hang 2010 December 1900 (has links)
As more and more wireless applications/services emerge in the market, the already heavily crowded radio spectrum becomes much scarcer. Meanwhile, however,as it is reported in the recent literature, there is a large amount of radio spectrum that is under-utilized. This motivates the concept of cognitive radio wireless networks
that allow the unlicensed secondary-users (SUs) to dynamically use the vacant radio spectrum which is not being used by the licensed primary-users (PUs).
In this dissertation, we investigate protocol design for both the synchronous and asynchronous cognitive radio networks with emphasis on the medium access control (MAC) layer. We propose various spectrum sharing schemes, opportunistic packet scheduling schemes, and spectrum sensing schemes in the MAC and physical (PHY) layers for different types of cognitive radio networks, allowing the SUs to opportunistically utilize the licensed spectrum while confining the level of interference to the range the PUs can tolerate. First, we propose the cross-layer based multi-channel MAC protocol, which integrates the cooperative spectrum sensing at PHY layer and the interweave-based spectrum access at MAC layer, for the synchronous cognitive radio networks. Second, we propose the channel-hopping based single-transceiver MAC protocol for the hardware-constrained synchronous cognitive radio networks, under which the SUs can identify and exploit the vacant channels by dynamically switching across the licensed channels with their distinct channel-hopping sequences. Third, we propose the opportunistic multi-channel MAC protocol with the two-threshold sequential spectrum sensing algorithm for asynchronous cognitive radio networks. Fourth, by combining the interweave and underlay spectrum sharing modes, we propose the adaptive spectrum sharing scheme for code division multiple access (CDMA) based cognitive MAC in the uplink communications over the asynchronous cognitive radio networks, where the PUs may have different types of channel usage patterns. Finally, we develop a packet scheduling scheme for the PU MAC protocol in the context of time division multiple access (TDMA)-based cognitive radio wireless networks, which is designed to operate friendly towards the SUs in terms of the vacant-channel probability.
We also develop various analytical models, including the Markov chain models, M=GY =1 queuing models, cross-layer optimization models, etc., to rigorously analyze the performance of our proposed MAC protocols in terms of aggregate throughput, access delay, and packet drop rate for both the saturation network case and non-saturation network case. In addition, we conducted extensive simulations to validate our analytical models and evaluate our proposed MAC protocols/schemes. Both the numerical and simulation results show that our proposed MAC protocols/schemes can significantly improve the spectrum utilization efficiency of wireless networks.
|
146 |
On spectrum sensing, resource allocation, and medium access control in cognitive radio networksKaraputugala Gamacharige, Madushan Thilina 12 1900 (has links)
The cognitive radio-based wireless networks have been proposed as a promising technology
to improve the utilization of the radio spectrum through opportunistic spectrum access. In
this context, the cognitive radios opportunistically access the spectrum which is licensed to
primary users when the primary user transmission is detected to be absent. For opportunistic
spectrum access, the cognitive radios should sense the radio environment and allocate
the spectrum and power based on the sensing results. To this end, in this thesis, I develop
a novel cooperative spectrum sensing scheme for cognitive radio networks (CRNs) based
on machine learning techniques which are used for pattern classification. In this regard,
unsupervised and supervised learning-based classification techniques are implemented for
cooperative spectrum sensing. Secondly, I propose a novel joint channel and power allocation
scheme for downlink transmission in cellular CRNs. I formulate the downlink
resource allocation problem as a generalized spectral-footprint minimization problem. The
channel assignment problem for secondary users is solved by applying a modified Hungarian
algorithm while the power allocation subproblem is solved by using Lagrangian
technique. Specifically, I propose a low-complexity modified Hungarian algorithm for subchannel
allocation which exploits the local information in the cost matrix. Finally, I propose
a novel dynamic common control channel-based medium access control (MAC) protocol
for CRNs. Specifically, unlike the traditional dedicated control channel-based MAC protocols,
the proposed MAC protocol eliminates the requirement of a dedicated channel for
control information exchange. / October 2015
|
147 |
Contributions à l'étude de détection des bandes libres dans le contexte de la radio intelligente.Khalaf, Ziad 08 February 2013 (has links) (PDF)
Les systèmes de communications sans fil ne cessent de se multiplier pour devenir incontournables de nos jours. Cette croissance cause une augmentation de la demande des ressources spectrales, qui sont devenues de plus en plus rares. Afin de résoudre ce problème de pénurie de fréquences, Joseph Mitola III, en 2000, a introduit l'idée de l'allocation dynamique du spectre. Il définit ainsi le terme " Cognitive Radio " (Radio Intelligente), qui est largement pressenti pour être le prochain Big Bang dans les futures communications sans fil [1]. Dans le cadre de ce travail on s'intéresse à la problématique du spectrum sensing qui est la détection de présence des Utilisateurs Primaires dans un spectre sous licence, dans le contexte de la radio intelligente. L'objectif de ce travail est de proposer des méthodes de détection efficaces à faible complexité et/ou à faible temps d'observation et ceci en utilisant le minimum d'information a priori sur le signal à détecter. Dans la première partie on traite le problème de détection d'un signal aléatoire dans le bruit. Deux grandes méthodes de détection sont utilisées : la détection d'énergie ou radiomètre et la détection cyclostationnaire. Dans notre contexte, ces méthodes sont plus complémentaires que concurrentes. Nous proposons une architecture hybride de détection des bandes libres, qui combine la simplicité du radiomètre et la robustesse des détecteurs cyclostationnaires. Deux méthodes de détection sont proposées qui se basent sur cette même architecture. Grâce au caractère adaptatif de l'architecture, la détection évolue au cours du temps pour tendre vers la complexité du détecteur d'énergie avec des performances proches du détecteur cyclostationnaire ou du radiomètre selon la méthode utilisée et l'environnement de travail. Dans un second temps on exploite la propriété parcimonieuse de la Fonction d'Autocorrelation Cyclique (FAC) pour proposer un nouvel estimateur aveugle qui se base sur le compressed sensing afin d'estimer le Vecteur d'Autocorrelation Cyclique (VAC), qui est un vecteur particulier de la Fonction d'Autocorrelation Cyclique pour un délai fixe. On montre par simulation que ce nouvel estimateur donne de meilleures performances que celles obtenues avec l'estimateur classique, qui est non aveugle et ceci dans les mêmes conditions et en utilisant le même nombre d'échantillons. On utilise l'estimateur proposé, pour proposer deux détecteurs aveugles utilisant moins d'échantillons que nécessite le détecteur temporel de second ordre de [2] qui se base sur l'estimateur classique de la FAC. Le premier détecteur exploite uniquement la propriété de parcimonie du VAC tandis que le second détecteur exploite en plus de la parcimonie la propriété de symétrie du VAC, lui permettant ainsi d'obtenir de meilleures performances. Ces deux détecteurs outre qu'ils sont aveugles sont plus performants que le détecteur non aveugle de [2] dans le cas d'un faible nombre d'échantillons.
|
148 |
Arquiteturas eficientes para sensoriamento espectral e classifica??o autom?tica de modula??es usando caracter?sticas cicloestacion?riasLima, Arthur Diego de Lira 28 June 2014 (has links)
Made available in DSpace on 2014-12-17T14:56:19Z (GMT). No. of bitstreams: 1
ArthurDLL_DISSERT.pdf: 2517302 bytes, checksum: c3d693c770dc1c58bad5f378aba6d268 (MD5)
Previous issue date: 2014-06-28 / The increasing demand for high performance wireless communication systems has
shown the inefficiency of the current model of fixed allocation of the radio spectrum. In
this context, cognitive radio appears as a more efficient alternative, by providing opportunistic
spectrum access, with the maximum bandwidth possible. To ensure these requirements,
it is necessary that the transmitter identify opportunities for transmission and the
receiver recognizes the parameters defined for the communication signal. The techniques
that use cyclostationary analysis can be applied to problems in either spectrum sensing and
modulation classification, even in low signal-to-noise ratio (SNR) environments. However,
despite the robustness, one of the main disadvantages of cyclostationarity is the high
computational cost for calculating its functions. This work proposes efficient architectures
for obtaining cyclostationary features to be employed in either spectrum sensing and automatic
modulation classification (AMC). In the context of spectrum sensing, a parallelized
algorithm for extracting cyclostationary features of communication signals is presented.
The performance of this features extractor parallelization is evaluated by speedup and
parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several
configuration of false alarm probability, SNR levels and observation time for BPSK and
QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as
a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature
is validated by a modulation classification architecture based on pattern matching. The
architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK,
MSK and FSK modulations, considering several scenarios of observation length and SNR
levels. The numerical results of performance obtained in this work show the eficiency of
the proposed architectures / O aumento da demanda por sistemas de comunica??o sem fio de alto desempenho tem
evidenciado a inefici?ncia do atual modelo de aloca??o fixa do espectro de r?dio. Nesse
contexto, o r?dio cognitivo surge como uma alternativa mais eficiente, ao proporcionar
o acesso oportunista ao espectro, com a maior largura de banda poss?vel. Para garantir
esses requisitos, ? necess?rio que o transmissor identifique as oportunidades de transmiss?o
e que o receptor reconhe?a os par?metros definidos para o sinal de comunica??o.
As t?cnicas que utilizam a an?lise cicloestacion?ria podem ser aplicadas tanto em problemas
de sensoriamento espectral, quanto na classifica??o de modula??es, mesmo em
ambientes de baixa rela??o sinal-ru?do (SNR). Entretanto, apesar da robustez, uma das
principais desvantagens da cicloestacionariedade est? no elevado custo computacional
para o c?lculo das suas fun??es. Este trabalho prop?e arquiteturas eficientes de obten??o
de caracter?sticas cicloestacion?rias para serem empregadas no sensoriamento espectral e
na classifica??o autom?tica de modula??es (AMC). No contexto do sensoriamento espectral,
um algoritmo paralelizado para extrair as caracter?sticas cicloestacion?rias de sinais
de comunica??o ? apresentado. O desempenho da paraleliza??o desse extrator de caracter?sticas
? avaliado atrav?s das m?tricas de speedup e efici?ncia paralela. A arquitetura
de sensoriamento espectral ? analisada para diversas configura??es de probabilidades de
falso alarme, n?veis de SNR e tempo de observa??o das modula??es BPSK e QPSK. No
contexto da AMC, o perfil-alfa reduzido ? proposto como uma assinatura cicloestacion?ria
calculada para um conjunto reduzido de frequ?ncia c?clicas. Essa assinatura ? validada
por meio de uma arquitetura de classifica??o baseada no casamento de padr?es. A arquitetura
para AMC ? investigada para as taxas de acerto obtidas para as modula??es AM,
BPSK, QPSK, MSK e FSK, considerando diversos cen?rios de tempo de observa??o e n?veis
de SNR. Os resultados num?ricos de desempenho obtidos neste trabalho demonstram
a efici?ncia das arquiteturas propostas
|
149 |
Separação cega de fontes aplicada no sensoriamento do espectro em rádio cognitivo / Blind source separation applied in spectrum sensing in cognitive radioRocha, Gustavo Nozella 01 June 2012 (has links)
Cognitive radio technology has been an important area of research in
telecommunications for solving the problem of spectrum scarcity. That\'s
because in addition to allowing dynamic allocation of the electromagnetic
spectrum, cognitive radios must be able to identify the non cognitive user\'s
transmission on the channel. This operation is only possible through the
continuous sensing of the electromagnetic spectrum. In this context, this
paper presents a detailed study on spectrum sensing, an important stage in
cognitive radio technology.
For the presentation of this work, a detailed study on software dened
radio (SDR) was carried out, without which it would be impossible to work
with cognitive radios, once they are implemented by means of SDR technology.
It was also presented the tools GNU Radio and USRP, which together
form a solution of SDR, through implementation of AM receivers.
The theoretical foundations of spectrum sensing and blind source separation
(BSS) are presented and then is made a detailed study of the use of
BSS for spectral sensing. From the study of BSS, it is possible to use new
metrics for decision making about the presence or the absence of a primary
user in the channel.
Throughout the study, simulations and implementations were conducted
on MATLAB in order to perform various situations, and, nally, it is presented
outcomes and conclusions reached during the work. / A tecnologia de rádio cognitivo tem sido uma importante área de pesquisa
em telecomunicações para a solução do problema da escassez espectral. Isto
porque, além de permitirem a alocação dinâmica do espectro eletromagnético,
os rádios cognitivos devem ser capazes de identificar as transmissões de
usuários não cognitivos no canal. Esta operação só é possível por meio do
sensoriamento contínuo do espectro eletromagnético. Neste contexto, este
trabalho apresenta um estudo detalhado sobre o sensoriamento de espectro,
uma importante etapa da tecnologia de rádios cognitivos. Para a apresentação deste trabalho foi realizado um estudo detalhado a respeito de rádio definido por software (SDR), sem o qual não seria possível o trabalho com rádios cognitivos, uma vez que este é implementado por meio da tecnologia de SDR. Também foram apresentadas as ferramentas GNU Radio e USRP, que, juntas, formam uma solução de SDR, por meio de implementações de receptores AM.
Os fundamentos teóricos de sensoriamento de espectro e separação cega
de fontes (BSS) são apresentados e, em seguida, é realizado um estudo aprofundado do uso de BSS para o sensoriamento espectral. A partir do estudo
de BSS, é possível utilizar novas métricas de decisão a respeito da presença
ou não de um usuário primário no canal.
Durante todo este trabalho foram realizadas implementações e simulações
no MATLAB com a finalidade de executar diversas situações e, finalmente,
são apresentados resultados verificados e conclusões obtidas neste trabalho. / Mestre em Ciências
|
150 |
Uma contribuição à análise espectral de sinais estacionários e não estacionáriosMenezes, Alam Silva 01 September 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-02-16T09:52:46Z
No. of bitstreams: 1
alamsilvamenezes.pdf: 8301590 bytes, checksum: aed618e30f38206da4bf4f329924f87e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-02-26T12:30:53Z (GMT) No. of bitstreams: 1
alamsilvamenezes.pdf: 8301590 bytes, checksum: aed618e30f38206da4bf4f329924f87e (MD5) / Made available in DSpace on 2016-02-26T12:30:53Z (GMT). No. of bitstreams: 1
alamsilvamenezes.pdf: 8301590 bytes, checksum: aed618e30f38206da4bf4f329924f87e (MD5)
Previous issue date: 2014-09-01 / A presente tese propõe soluções ao problema da explicitação do conteúdo espectral de
processos estacionários e não estacionários, com aplicações na estimação de frequência,
estimação da densidade espectral de potência e no monitoramento do espectro. A técnica
de estimação de frequência proposta nesta tese, baseada na warped discrete Fourier
transform, apresenta, de acordo com as simulações computacionais, o melhor desempenho
frente às demais técnicas comparadas, atingindo o Cramer-Rao bound para uma ampla
faixa de relação sinal ruído. Em relação a estimação da densidade espectral de potência,
a Hartley Multitaper method, proposta nesta tese, apresenta desempenho similar à
multitaper method, em termos da variância de estimação e da polarização do espectro,
mas simpli cação de implementação. Uma técnica para monitoramento do espectro para
sistemas power line communication é proposta, levando em consideração o conceito de
quanta e a diversidade observada quando os sinais são aquisitados a partir da rede de
energia elétrica e do ar. Baseando-se em sinais sintéticos, gerados em computador, assim
como dados de medição do espectro, obtidos utilizando uma antena e o cabo de energia
elétrica como elementos sensores, veri fica-se que o desempenho da técnica proposta supera
a monitoração padrão, sobretudo quando a diversidade gerada pelo cabo e pela antena
sobre o sinal monitorado é explorada na detecção. / This dissertation aims at discussing solutions to deal with spectral analysis of stationary
and non-stationary processes for frequency estimation, power spectral density estimation
and spectral monitoring applications. The frequency estimation techniques are assessed
through computer simulations. The proposed technique for frequency estimation is
based on warped discrete Fourier transform outperforms other techniques, achieving the
Cramer-Rao Bound for a wide range of signal to noise ratio. Regarding the power spectral
density estimation, the proposed Hartley Multitaper Method shows similar performance,
in terms of variance of estimates and polarization spectrum; however, it can simplify
the implementation complexity. The introduced spectrum sensing technique is based on
quanta de nition and the diversity o ered by the signals acquired from the electric power
grids and the air. Based on computer-generation data and those one obtained during a
measurement campaign, which one in this thesis is evaluated using synthetic signals, generated
by computer, as well as measurement data of the spectrum. The numerical results
show that the proposed technique outperforms a previous technique and can attain the
very detection ratio and the very low false alarm when the diversity yielded by electric
power grid and air is exploited.
|
Page generated in 0.0664 seconds