Spelling suggestions: "subject:"st.lawrence river"" "subject:"st.lawrence liver""
1 |
Role of bubbling from aquatic sediments in mercury transfer to a benthic invertebrate in the St. Lawrence River, Cornwall, OntarioRazavi, Neguysa Roxanna 05 January 2009 (has links)
Benthic uptake of mercury (Hg) governs bioavailability to fish yet there are still large gaps in our knowledge of what mediates this process. Without this information it is difficult to ascertain where Hg accumulation in the foodweb will be greatest. In the St. Lawrence River Area of Concern (AOC) at Cornwall, one contaminated zone (Zone 1) shows elevated Hg in yellow perch (Perca flavescens) and their prey items compared to those from other zones in the AOC. Greater availability of Hg to benthos due to unique physical features (large deposition of woodfibre deposits) of Zone 1 is hypothesized to account for this observation. In this study, amphipods (Gammarus fasciatus) and (Echinogammarus ischnus) were collected in Zone 1 using artificial substrates between June-September 2007, and Hg concentrations compared to those obtained in sediments and porewaters of surficial sediments, as well as methane gas evasion rates. Methylmercury (MeHg) concentrations in amphipods were significantly related to porewater total Hg (THg) and MeHg concentrations. No parallel relationship was found for sediment Hg concentrations or methane bubbling rates from sediments. Spatial and temporal trends in Hg bioavailability were evident from significant relationships with water column depth and temperature. Water column depth was associated with higher MeHg concentrations in amphipods and porewaters. Concentrations of porewater MeHg were above the detection limit in all of the June samples, the month which also coincided with highest amphipod MeHg concentrations. Finally, sediment organic matter may be influencing patterns of MeHg availability in Zone 1, and displayed a negative relationship to amphipod MeHg. Although bubbling from contaminated sediments did not directly correlate with amphipod Hg uptake, future studies should look at the influence of bubbling on the redistribution of contaminated sediment particles within the zone. / Thesis (Master, Biology) -- Queen's University, 2008-12-30 23:34:20.287
|
2 |
Mass Balance Model of Mercury for the St. Lawrence River, Cornwall, OntarioLessard, Charlotte 14 May 2012 (has links)
We have developed a regional mass balance model for the St. Lawrence River near Cornwall, Ontario that describes the fate and transport of mercury in three forms, elemental mercury (Hg0), divalent mercury (Hg2+), and methyl mercury (MeHg), in a five compartment environment (air, water, sediments, periphyton, and benthos). Our first objective was to construct a steady-state mass balance model to determine the dominant sources and sinks of mercury in this environment. Our second objective was to construct a dynamic mass balance model to predict and hindcast mercury concentrations in this environment. We compiled mercury concentrations, fluxes, and transformation rates from previous studies completed in this section of the river to develop the model in STELLA®. The inflow of mercury was the major source to this system, accounting for 0.42 mol month-1, or 95.5% of all mercury inputs, whereas outflow was 0.28 mol month-1, or 63.6% of all losses, and sediment deposition was 0.12 mol month-1, or 27.3% of all losses. The dynamic mass balance model provides estimated results that are consistent with measured data and predicts historical local industrial emissions to be approximately 400 kg year-1. Uncertainty estimates were greatest for advective fluxes in surface water, porewater, periphyton, and benthic invertebrates. This model is useful for predicting and hindcasting mercury concentrations in other aquatic environments because it contains the three main environmental compartments, all forms of mercury, and compartments (e.g. periphyton) not included in previous mercury multi-media models.
|
3 |
Mass Balance Model of Mercury for the St. Lawrence River, Cornwall, OntarioLessard, Charlotte 14 May 2012 (has links)
We have developed a regional mass balance model for the St. Lawrence River near Cornwall, Ontario that describes the fate and transport of mercury in three forms, elemental mercury (Hg0), divalent mercury (Hg2+), and methyl mercury (MeHg), in a five compartment environment (air, water, sediments, periphyton, and benthos). Our first objective was to construct a steady-state mass balance model to determine the dominant sources and sinks of mercury in this environment. Our second objective was to construct a dynamic mass balance model to predict and hindcast mercury concentrations in this environment. We compiled mercury concentrations, fluxes, and transformation rates from previous studies completed in this section of the river to develop the model in STELLA®. The inflow of mercury was the major source to this system, accounting for 0.42 mol month-1, or 95.5% of all mercury inputs, whereas outflow was 0.28 mol month-1, or 63.6% of all losses, and sediment deposition was 0.12 mol month-1, or 27.3% of all losses. The dynamic mass balance model provides estimated results that are consistent with measured data and predicts historical local industrial emissions to be approximately 400 kg year-1. Uncertainty estimates were greatest for advective fluxes in surface water, porewater, periphyton, and benthic invertebrates. This model is useful for predicting and hindcasting mercury concentrations in other aquatic environments because it contains the three main environmental compartments, all forms of mercury, and compartments (e.g. periphyton) not included in previous mercury multi-media models.
|
4 |
Mass Balance Model of Mercury for the St. Lawrence River, Cornwall, OntarioLessard, Charlotte January 2012 (has links)
We have developed a regional mass balance model for the St. Lawrence River near Cornwall, Ontario that describes the fate and transport of mercury in three forms, elemental mercury (Hg0), divalent mercury (Hg2+), and methyl mercury (MeHg), in a five compartment environment (air, water, sediments, periphyton, and benthos). Our first objective was to construct a steady-state mass balance model to determine the dominant sources and sinks of mercury in this environment. Our second objective was to construct a dynamic mass balance model to predict and hindcast mercury concentrations in this environment. We compiled mercury concentrations, fluxes, and transformation rates from previous studies completed in this section of the river to develop the model in STELLA®. The inflow of mercury was the major source to this system, accounting for 0.42 mol month-1, or 95.5% of all mercury inputs, whereas outflow was 0.28 mol month-1, or 63.6% of all losses, and sediment deposition was 0.12 mol month-1, or 27.3% of all losses. The dynamic mass balance model provides estimated results that are consistent with measured data and predicts historical local industrial emissions to be approximately 400 kg year-1. Uncertainty estimates were greatest for advective fluxes in surface water, porewater, periphyton, and benthic invertebrates. This model is useful for predicting and hindcasting mercury concentrations in other aquatic environments because it contains the three main environmental compartments, all forms of mercury, and compartments (e.g. periphyton) not included in previous mercury multi-media models.
|
5 |
Assessing the spatial and temporal patterns of total mercury δ 15N and δ13C in yellow perch and their prey items from a contaminated site, St. Lawrence River, Cornwall, ONYanch, Laura Elizabeth 02 August 2007 (has links)
As a result of the legacy of industrial contamination over the last century, areas of sediment deposition in the St. Lawrence River at Cornwall, ON, contain high concentrations of mercury (Hg). The popular sport-fish species, yellow perch (Perca flavescens) and walleye (Sander vitreus) have been found to contain mercury concentrations exceeding Ontario Ministry of Environment consumption guidelines. Interestingly, a paradox exists between two contaminated sites – despite elevated sediment Hg concentrations at Zone 2, fish from Zone 1 contain higher Hg concentrations. Further research has indicated that these patterns of Hg were not attributed to growth rate, condition factor, diet composition, or trophic position of yellow perch. Rather, Hg concentrations in yellow perch may be described by the heterogeneity of prey contamination and fish bioenergetics. As a result of the paradox between total Hg (THg) concentrations in sediments and biota between two contaminated sites, it was necessary to examine the benthic invertebrate community and how it may transfer Hg from sediments to yellow perch. This apparent paradox now extends to all prey items, since prey items from the stomach contents of yellow perch caught in Zone 1 were significantly more contaminated than those of Zone 2. Use of δ15N and δ13C, measures of trophic position and energy source, respectively, indicated that prey selection, but not food chain length, may also be an important factor in explaining the variation in Hg burdens in yellow perch. Small-scale patterns of biomagnification, as shown by a comparison of δ15N and logTHg, indicated that the rates of biomagnification were similar among zones, but the amount of THg present at the base of the food web was twice as high at Zone 1 as at other contaminated sites. Overall, the relative importance of vertical and horizontal food web structure changed spatially and temporally, highly influencing THg concentrations of prey items and yellow perch. / Thesis (Master, Biology) -- Queen's University, 2007-08-02 08:02:40.26
|
6 |
Geophysical studies of sediments in waters near Hong Kong and in the Gulf of St. LawrenceWong, How-Kin., 黃孝建. January 1967 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
7 |
La chaloupe à quille en Nouvelle-France : une embarcation et son milieuLarochelle, Anne-Marie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
8 |
La chaloupe à quille en Nouvelle-France : une embarcation et son milieuLarochelle, Anne-Marie January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
9 |
La dégradation de la matière organique dissoute comme indicateur de la réactivité écosystémique du fleuve Saint-LaurentMaisonneuve, Philippe 03 1900 (has links)
La matière organique dissoute (MOD) joue un rôle clé dans le fonctionnement des rivières à titre de vecteur de carbone organique et d’énergie, tout en contribuant au transport de nutriments, de métaux et de divers contaminants. Elle est principalement dégradée à travers la minéralisation photochimique et la respiration bactérienne. La vitesse à laquelle se produit cette dégradation est influencée à la fois par la composition chimique et moléculaire de la MOD et par les conditions environnementales dans lesquelles elle est transformée. Toutefois, les études évaluant simultanément ces effets intrinsèques et extrinsèques sont rares en milieu fluvial et la plupart se concentrent sur un seul des processus de dégradation. De plus, les résultats de ces expériences sont rarement transposés à une colonne d’eau entière, ce qui limite l’évaluation de la réactivité écosystémique en rivière. Durant l’été 2019, nous avons échantillonné 40 sites le long d’un transect de 207 kilomètres sur le fleuve Saint-Laurent, une grande rivière tempérée dans laquelle s’écoulent côte-à-côte deux masses d’eau contrastées en termes de propriétés chimiques et physiques. En laboratoire, nous avons évalué la bio- et la photo-réactivité de la MOD au moyen d’incubations et d'expositions sous un simulateur solaire pour ensuite transposer ces données à l’écosystème en estimant pour tous les sites échantillonnés des taux surfaciques de dégradation in situ à partir de profils lumineux et bathymétriques. Nos résultats indiquent que la dégradation in situ de la MOD est essentiellement déterminée par la dégradation biologique. Cette dernière est généralement un à deux ordres de grandeur plus importante que la dégradation photochimique. Les taux surfaciques totaux de dégradation (calculés comme la somme des taux de dégradation photochimique et biologique) vont de 36,7 à 892,1 mg C m-2 j-1. Les taux surfaciques de dégradation photochimique sont principalement influencés par la photoréactivité de la MOD. En revanche, nous avons identifié un pool relativement constant de MOD bioréactive qui semble indépendant de la concentration initiale, de la composition ou des conditions environnementales. Des taux disproportionnellement élevés de biodégradation (2,5 à 4 fois la moyenne) ont été observés pour quelques sites peu profonds et situés près d’effluents urbains ou d’îles. Ces taux sont probablement stimulés par une combinaison de concentrations élevées en nutriments et une proportion plus importante de composantes protéiniques dans la MOD. Nos travaux fournissent l’une des rares démonstration expérimentale de la dominance de la dégradation biologique dans les grandes rivières, mais révèlent que la dégradation photochimique peut être d’importance comparable dans certaines zones de faible profondeur plus fortement connectées au milieu terrestre. En somme, ces observations suggèrent l’existence de points de contrôle écosystémiques pour la réactivité de la MOD dans les grandes rivières et laissent entrevoir de nouveaux questionnements quant à leur rôle dans l’export et le transport de matière terrestre. / Dissolved organic matter (DOM) is central to rivers functioning as it is a complex mixture composed of vast amounts of organic carbon and energy, also acting as a vector for nutrients, metals and various contaminants. Both the chemical and molecular composition of the DOM and the environmental conditions in which it is processed can influence its rate of removal from the water column, mainly through photochemical mineralization and bacterial respiration. Studies evaluating these intrinsic and extrinsic aspects simultaneously, particularly on both the biological and photochemical degradation are rare, particularly in large fluvial systems. During the summer of 2019, we sampled a 207 km transect of the St. Lawrence (SLR), a large temperate river in which flows two strikingly distinct water masses in terms of origin as well as chemical and physical properties. We then assessed DOM bio- and photo-reactivity at 40 sites along the river through a series of standardized incubations and exposure to simulated sunlight, and then used water irradiance and morphometric profiles to estimate in situ areal rates of processing across the river. We found that the in situ reactivity was mostly driven by biological degradation, which was typically one to two order of magnitude higher than photochemical degradation. Total daily processing (calculated as the sum of photochemical and biological degradation) across the whole water column ranged from 36.7 to 892.1 mg C m-2 d-1. In situ photochemical degradation was largely driven by DOM photoreactivity. In contrast, we found a relatively constant baseline pool of biolabile DOM that appeared to be independent from changes in concentration and environmental conditions. Disproportionately high biodegradation rates (2.5-4x the average) were found in a few shallower sites, near effluents or islands, potentially driven by a combination of local increases in nutrient concentration and compositional changes in the proportion of protein-like DOM. We provide rare experimental evidence for the often-assumed dominance of biodegradation over photodegradation in large rivers, but also emphasize that photodegradation can locally be just as important in terrestrially connected areas of low depth. In turn, these observations hint at the presence of ecosystem control points in large and heterogenous rivers with contrasting sources and composition of DOM, opening new research perspectives into the role of large rivers in the export and retention of terrestrial matter.
|
10 |
L’industrie des croisières au Québec et les impacts environnementaux sur le Saint-LaurentKingsbury, Antoine 03 1900 (has links)
No description available.
|
Page generated in 0.0688 seconds