• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 16
  • 8
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 34
  • 26
  • 25
  • 24
  • 17
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effect of Toxoplasma gondii on Altering Dopamine Levels and Neuroinflammation Contributing to an Increased Risk of Developing Schizophrenia

Bramlett, Derek Lee 07 May 2016 (has links)
Toxoplasma gondii infection is common in humans and is a significant risk factor for developing the disease schizophrenia. Genetic risk factors are likely required for the disease of schizophrenia to develop. Nurr1 – heterozygous (+/-) mice and wild-type (+/+) mice were evaluated using immune activation of astrocytes within the prefrontal cortex, dopamine levels within the striatum, and measuring the acoustic startle response reaction time by using prepulse inhibition (PPI). T. gondii infected heterozygous (+/-) mice exhibited increased GFAP expression within the prefrontal cortex. Dopamine levels within the striatum were measured and T. gondii infected wild-type (+/+) mice exhibited increased dopamine levels. The acoustic startle response reaction time was measured using PPI and T. gondii infected mice exhibited slower reaction times when compared to controls. These data demonstrate that the Nurr1 (+/-) genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia.
72

Studies in Trypsin as an Alarm Substance in Zebrafish

Alsrhani, Abdullah Falleh 08 1900 (has links)
Previous studies have shown that fish release alarming substances into the water to alert their kin to escape from danger. In our laboratory, we found that zebrafish produce trypsin and release it from their gills into the environment when they are under stress. By placing the zebrafish larvae in the middle of a small tank and then placing trypsin at one end of the tank, we observed that the larvae moved away from the trypsin zone and almost to the opposite end of the tank. This escape response was significant and did not occur in response to the control substances, bovine serum albumin (BSA), Russell's viper venom (RVV), and collagen. Also, previously, we had shown that the trypsin could act via a protease-activated receptor-2 (PAR2) on the surface of the cells. Therefore, we hypothesized that trypsin would induce a change in neuronal activity in the brain via PAR2-mediated signaling in cells on the surface of the fish body. To investigate whether the trypsin-responsive cells were surface cells, we generated a primary cell culture of zebrafish keratinocytes, confirmed these cells' identity by specific marker expression, and then incubated these cells with the calcium indicator Fluo-4 and exposed them to trypsin. By using calcium flux assay in a flow-cytometer, we found that trypsin-treated keratinocytes showed an increase in intracellular calcium release. To test whether PAR2 mediates the escape response to trypsin, we treated larvae with a PAR2 antagonist and showed that the trypsin-initiated escape response was abrogated. Furthermore, par2a mutants with knockdown of par2a by the piggyback knockdown method failed to respond to trypsin. Trypsin treatment of adult fish led to an approximately 2-fold increase in brain c-fos mRNA levels 45 mins after trypsin treatment, suggesting that trypsin signals may have reached the brain, probably via a spinothalamic pathway. Taken together, our results reveal a novel trypsin-initiated escape response in fish. These studies should enhance our understanding of fish communication in general and alarm behavior in particular. Furthermore, since pain receptors in other animals are also PAR2, our finding may be useful in exploring pathways of pain reception.
73

UNDERSTANDING THE ROLE OF OXYTOCIN IN SENSORIMOTOR GATING DEFICITS

Dike, Obianuju E. 01 December 2009 (has links)
No description available.
74

The relation of spontaneous startles to cardiac and respiratory activity in newborn infants

Huntington, Lee January 1985 (has links)
Previous studies have reported that spontaneous startles occur most frequently in the quiet sleep states, and have posited an energy release model in which spontaneous startles occur to release energy which would otherwise wake the infant. An alternative suggestion is that startles serve a homeostatic function by increasing the activity of the infant during periods of low arousal. The purpose of the current study was to examine the function of spontaneous startles using the ongoing cardiac and respiratory activity as indices of arousal. Twenty-six newborn infants were assigned to two groups. The first group was exposed to auditory stimulation which previously had been shown to decrease heart rate and respiratory rate for the first half of the one hour observation period. To the extent that spontaneous startles are related to periods of low arousal, decreasing the ongoing activity via the auditory intervention was expected to increase the rate of startles. The second group received no auditory stimulation. The occurrence of spontaneous startles was preceded by periods of lower than average heart rate and decreasing respiratory rate. Startles were followed by periods of increasing heart rate and further decreasing respiratory rate. In addition, the auditory intervention group reliably showed both a lower heart rate and an increased number of startles while exposed to the auditory stimulation, while the nonintervention group showed comparable rates of startles and heart rates in both halves of the observation period. Further, regardless of group status, most infants had their higher rate of startles in the period in which they had their lower heart rate. Finding lower heart rate and decreasing respiratory rate preceding startles, and lower heart rate and increased number of startles when exposed to the auditory stimulation, suggests that spontaneous startles modulate periods of low arousal in newborn infants. / Ph. D.
75

Diagnostic and experimental applications of cortico-muscular and intermuscular frequency analysis

Grosse, Pascal 24 June 2004 (has links)
In dieser Arbeit kann gezeigt warden, dass mit der kortiko-muskulären und intermuskulären Frequenzanalyse distinkte Koheränzmuster bei verschiedenen Bewegungsstörungen (kortikaler Myoklonus, Extremitätendystonie, Myoklonus bei kortikobasaler Degeneration) identifiziert werden können. Ferner konnte gezeigt werden, dass das retikulospinale System mit der intermuskulären Frequenzanalyse untersucht werden kann, was neue Perspektiven bei der Untersuchung subkortikaler Abschnitte des motorischen Systems ermöglicht. / It can be shown in this work that distinct patterns of cortico-muscular and/or intermuscular coherence can be identfied in a variety of movement disorders (cortical myoclonus, limb dystonia, myoclonus of CBD). Additionally, it could be demonstrated that the assessment of the reticulospinal system is feasible by using intermuscular frequency analysis of homologous muscles, which might open up a new line of research of subcortical drives within the motor system.
76

The impact of serotonergic and dopaminergic genetic variation on endophenotypes of emotional processing

Armbruster, Diana 29 December 2010 (has links) (PDF)
Decades of research in quantitative genetics have found substantial heritability for personality traits as well as for mental disorders which formed the basis of the ongoing molecular genetic studies that aim to identify genetic variations that actually contribute to the manifestation of complex traits. With regard to psychological traits, genetic variation impacting neurotransmitter function have been of particular interest. Additionally, the role of environmental factors including gene × environment interactions has been further investigated and the impor-tance of developmental aspects has been stressed. Furthermore, endophenotypes which link complex traits with their respective biological underpinnings and thus bridge the gap between gene and behaviour have begun to be included in research efforts. In accordance with this approach, this thesis aims to further examine the influence of genetic variation impacting serotonergic and dopaminergic functioning on endophenotypes of anxiety-related behaviour. To this end, two well established paradigms – the acoustic startle reflex and the cortisol stress response – were employed. Both show considerable interindividual variation which has been found in quantitative genetic studies to be at least partly based on genetic factors. In addition, the neural circuits underlying these endophenotypes are relatively well understood and thus reveal references for the detection of associated genetic influences. The results of this thesis associate the overall startle magnitude in two independent samples of young adults with a polymorphism in the promoter region of the serotonin transporter (5-HTT) gene (5-HTTLPR): Carriers of the short (S) allele which results in a reduced gene ex-pression showed a stronger startle magnitude which is in line with numerous findings linking the S allele to increased measures of negative emotionality. In addition to 5-HTTLPR, the effects of past stressful life events on the startle response were investigated: Participants who had recently experienced at least one stressful life event exhibited stronger startle responses and reduced habituation of the startle reflex although there was no 5-HTTLPR × environment inter-action effect. A third study revealed independent and joint effects of 5-HTTLPR and a poly-morphism in the dopamine receptor 4 gene (DRD4) in the same sample of young adults with regard to the cortisol stress response with carriers of the DRD4 7R allele which has been associ-ated with higher scores in sensation seeking, showing reduced cortisol responses. In addition, a 5-HTTLPR × DRD4 interaction effect emerged: 5-HTTLPR long (L) allele carriers showed the lowest cortisol response but only when they possessed at least one copy of the DRD4 7R allele. Moreover, in a fourth study a life span approach was taken and the influence of a further important serotonergic polymorphism which impacts the functioning of tryptophan hydroxylase 2 (TPH2), the rate limiting enzyme in the biosynthesis of serotonin, on interindividual differences in the startle response was investigated in three different age samples: children, young adults and older adults. There was a sex × TPH2 genotype interaction effect in a sample of young adults on the overall startle response while there was no effect of TPH2 in children or older adults. The last study of this thesis presents findings regarding the influence of two dopaminergic polymorphisms in genes encoding the enzyme catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT), respectively, which both terminate dopamine signalling and are thus important regulators of dopaminergic neurotransmission, on the startle reflex in older adults. COMT met/met homozygotes showed the strongest and val/val homozygotes displayed the smallest startle magnitude which is in line with findings linking the COMT met allele to increased scores of anxiety related traits and disorders. Regarding DAT, participants homozygous for the 10R allele, which had previously associated with attention-deficit hyperactivity disorder, showed a stronger overall startle response. In sum, this thesis comprises data on interindividual differences in an electrophysiological and a hormonal endophenotype across the life span and their association with serotonergic and dopaminergic function based on genetic variation. One major finding is the clear evidence for the influence of serotonergic polymorphisms on the startle response in young adults while in contrast in older adults genetic variation in the dopaminergic system exerted considerable influence. These differences might be due to developmental processes in the different stages of life although cohort effects and effects of different recruitment strategies can also not be ruled out. Furthermore, there were significant differences regarding the genetic influence on the acoustic startle reflex and cortisol stress response in one and the same sample which might be due to methodological differences of the two paradigms as well as differences in their underlying neuronal circuits. In conclusion, this thesis supports the acoustic startle reflex and the cortisol stress response as valuable endophenotypes and thus indicators for underlying neurobiological circuits although some methodological issues remain. It also highlights the importance of taking developmental factors and changes over the course of life into account. Finally, this thesis emphasizes the necessity to include reliably and validly assessed past experienced events in molecular genetic studies in order to understand the interplay between genetic and environmental factors in shaping (endo)-phenotypes.
77

The impact of serotonergic and dopaminergic genetic variation on endophenotypes of emotional processing

Armbruster, Diana 14 December 2010 (has links)
Decades of research in quantitative genetics have found substantial heritability for personality traits as well as for mental disorders which formed the basis of the ongoing molecular genetic studies that aim to identify genetic variations that actually contribute to the manifestation of complex traits. With regard to psychological traits, genetic variation impacting neurotransmitter function have been of particular interest. Additionally, the role of environmental factors including gene × environment interactions has been further investigated and the impor-tance of developmental aspects has been stressed. Furthermore, endophenotypes which link complex traits with their respective biological underpinnings and thus bridge the gap between gene and behaviour have begun to be included in research efforts. In accordance with this approach, this thesis aims to further examine the influence of genetic variation impacting serotonergic and dopaminergic functioning on endophenotypes of anxiety-related behaviour. To this end, two well established paradigms – the acoustic startle reflex and the cortisol stress response – were employed. Both show considerable interindividual variation which has been found in quantitative genetic studies to be at least partly based on genetic factors. In addition, the neural circuits underlying these endophenotypes are relatively well understood and thus reveal references for the detection of associated genetic influences. The results of this thesis associate the overall startle magnitude in two independent samples of young adults with a polymorphism in the promoter region of the serotonin transporter (5-HTT) gene (5-HTTLPR): Carriers of the short (S) allele which results in a reduced gene ex-pression showed a stronger startle magnitude which is in line with numerous findings linking the S allele to increased measures of negative emotionality. In addition to 5-HTTLPR, the effects of past stressful life events on the startle response were investigated: Participants who had recently experienced at least one stressful life event exhibited stronger startle responses and reduced habituation of the startle reflex although there was no 5-HTTLPR × environment inter-action effect. A third study revealed independent and joint effects of 5-HTTLPR and a poly-morphism in the dopamine receptor 4 gene (DRD4) in the same sample of young adults with regard to the cortisol stress response with carriers of the DRD4 7R allele which has been associ-ated with higher scores in sensation seeking, showing reduced cortisol responses. In addition, a 5-HTTLPR × DRD4 interaction effect emerged: 5-HTTLPR long (L) allele carriers showed the lowest cortisol response but only when they possessed at least one copy of the DRD4 7R allele. Moreover, in a fourth study a life span approach was taken and the influence of a further important serotonergic polymorphism which impacts the functioning of tryptophan hydroxylase 2 (TPH2), the rate limiting enzyme in the biosynthesis of serotonin, on interindividual differences in the startle response was investigated in three different age samples: children, young adults and older adults. There was a sex × TPH2 genotype interaction effect in a sample of young adults on the overall startle response while there was no effect of TPH2 in children or older adults. The last study of this thesis presents findings regarding the influence of two dopaminergic polymorphisms in genes encoding the enzyme catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT), respectively, which both terminate dopamine signalling and are thus important regulators of dopaminergic neurotransmission, on the startle reflex in older adults. COMT met/met homozygotes showed the strongest and val/val homozygotes displayed the smallest startle magnitude which is in line with findings linking the COMT met allele to increased scores of anxiety related traits and disorders. Regarding DAT, participants homozygous for the 10R allele, which had previously associated with attention-deficit hyperactivity disorder, showed a stronger overall startle response. In sum, this thesis comprises data on interindividual differences in an electrophysiological and a hormonal endophenotype across the life span and their association with serotonergic and dopaminergic function based on genetic variation. One major finding is the clear evidence for the influence of serotonergic polymorphisms on the startle response in young adults while in contrast in older adults genetic variation in the dopaminergic system exerted considerable influence. These differences might be due to developmental processes in the different stages of life although cohort effects and effects of different recruitment strategies can also not be ruled out. Furthermore, there were significant differences regarding the genetic influence on the acoustic startle reflex and cortisol stress response in one and the same sample which might be due to methodological differences of the two paradigms as well as differences in their underlying neuronal circuits. In conclusion, this thesis supports the acoustic startle reflex and the cortisol stress response as valuable endophenotypes and thus indicators for underlying neurobiological circuits although some methodological issues remain. It also highlights the importance of taking developmental factors and changes over the course of life into account. Finally, this thesis emphasizes the necessity to include reliably and validly assessed past experienced events in molecular genetic studies in order to understand the interplay between genetic and environmental factors in shaping (endo)-phenotypes.
78

Modulação hormonal das alterações psicofisiológicas induzidas pelo uso crônico do anestésico dissociativo ketamina / Hormonal modulation of the psychophysiological changes induced by the chronic use of the dissociative anesthetic ketamine

Brasilino, Lígia Santos Bueno 27 June 2017 (has links)
A ketamina, antagonista não competitivo de receptores NMDA, apresenta potentes efeitos psicomiméticos, sendo capaz de acentuar o estado psicótico de pacientes esquizofrênicos. Uma das áreas cerebrais afetadas por seu uso é o córtex pré-frontal, já que o desempenho em tarefas que dependem de sua atividade é profundamente alterado pela administração aguda de ketamina. Assim como na esquizofrenia, estas alterações podem sofrer influência de fatores hormonais, alterações estas que podem ser explicadas pelos efeitos dos hormônios sexuais femininos, como o estrogênio, os quais apresentam um papel regulador sobre os sistemas dopaminérgicos, serotonérgicos, glutamatérgicos e GABAérgicos, todos afetados pelos efeitos agudos e crônicos do uso de ketamina. Este projeto, portanto, teve como meta avaliar os possíveis efeitos da administração crônica e retirada de ketamina sobre a expressão de comportamentos relacionados à ansiedade humana em ratas da linhagem Wistar, assim como a influência dos hormônios estradiol e a progesterona sobre esta variável. As possíveis alterações farmacológicas induzidas pela administração crônica de ketamina sobre os sistemas dopaminérgicos e serotoninérgicos da divisão pré-límbica (PrL) do córtex pré-frontal medial serão avaliadas através da injeção local de antagonista/agonista específicos. Nossos dados reforçam a ideia de que a ketamina demonstra de forma significativa a expressão da resposta aprendida de medo. E também, os dados mostram que a abstinência da droga altera este comportamento, particularmente a capacidade cognitiva relacionada ao encadeamento de estímulos. Da mesma forma que outras drogas de abuso, estas alterações parecem envolver tanto o sistema dopaminérgico quanto serotoninérgico do CPFm. / Ketamine, a non-competitive antagonist of NMDA receptors, has potent psychomimetic effects, being able to accentuate the psychotic state of schizophrenic patients. One of the brain areas affected by its use is the prefrontal cortex, since performance in tasks that depend on its activity is profoundly altered by the acute administration of ketamine. As in schizophrenia, these changes may be influenced by hormonal factors, which can be explained by the effects of female sex hormones, such as estrogen, which play a role in the dopaminergic, serotonergic, glutamatergic and GABAergic systems, all affected acute and chronic effects of ketamine use. This project therefore aimed to evaluate the possible effects of chronic administration and withdrawal of ketamine on the expression of behaviors related to human anxiety in Wistar rats, as well as the influence of the hormones estradiol and progesterone on this variable. The possible pharmacological changes induced by chronic ketamine administration on the dopaminergic and serotonergic systems of the prelambial (PrL) division of the medial prefrontal cortex will be assessed by specific local antagonist / agonist injection. Our data reinforce the idea that ketamine demonstrates significantly the expression of the learned response of fear. Also, the data show that drug abstinence alters this behavior, particularly the cognitive capacity related to the chaining of stimuli. Like other drugs of abuse, these changes appear to involve both the dopaminergic and serotonergic system of CPFm.
79

Diferenças associadas ao ciclo estral na reatividade emocional de ratas a estímulos incondicionados e condicionados de medo / Sex and estrous cycle-linked differences in responsiveness to unconditioned, but not conditioned fear stimuli in rats.

Figueiredo, Rebeca Machado de 07 October 2016 (has links)
O desequilíbrio da homeostase emocional tem sido considerado como um mecanismo subjacente aos transtornos de ansiedade e humor. Em fêmeas, as alterações na secreção hormonal durante as diferentes fases do ciclo estral podem ser a base das alterações na reatividade emocional a eventos estressantes. Estudos comportamentais sobre diferenças sexuais no processamento das emoções mostram resultados conflitantes em fêmeas devido às dificuldades na seleção dos melhores modelos animais para testar as diferenças associadas ao ciclo estral. Uma vez que os testes comportamentais foram desenvolvidos em animais do sexo masculino, eles podem não ser apropriados para fêmeas. O presente estudo foi desenvolvido para contribuir nessa linha de pesquisa usando diferentes modelos de animais de medo incondicionado e condicionado, considerando as diferentes fases do ciclo estral das ratas. Comparou-se o desempenho de machos e fêmeas nas quatro fases do ciclo estral em dois testes de medo incondicionado: o switch-off, em que ratos cruzam uma caixa vai-e-vem para desligar uma luz aversiva, e o registro de vocalizações ultrassônicas (VUSs) a 22 kHz emitidos por animais sob o estresse agudo de restrição. Nos testes de medo condicionado, registrou-se o sobressalto potencializado pelo medo e a resposta decongelamento a um contexto aversivo. Em ambos os testes de medo condicionado, a reatividade emocional não se mostrou diferente entre os sexos. No entanto, no que diz respeito ao medo incondicionado, ratas em diestro tardio apresentaram maior reatividade emocional em desligar a luz intensa e maior emissão de VUSs em resposta à restrição em relação a outras fases do ciclo. Estes achados sugerem que o perfil hormonal durante a fase do diestro 2 pode aumentar a reatividade emocional de ratas frente a estímulos inatos, porém não àqueles aprendidos. / Dysfunctional emotional regulation has been implicated as a potential mechanism underlying anxiety and mood disorders. Changes in hormonal secretion during the different phases of the estrous cycle may underlie changes in emotional reactivity to stressful events in female animals. Previous behavioral studies of sex differences in emotion processing in females have yielded conflicting results. This may be due to the range of different behavioral tests used and difficulties in selecting the best animal models to test for estrous cycle-linked differences in responsiveness. Furthermore, the commonly used behavioral tests were developed in male animals and it may not be appropriate to translate directly the protocols from males to females. In the present study we have attempted to address these problems by using different animal models of anxiety based on tests for unconditioned or conditioned fear. We compared the performance of male rats and female rats at four stages of the estrous cycle defined by differences in vaginal cytology. To test for unconditioned fear, we used two tests: a light switch- off test, in which rats escape to the other compartment of a shuttle-box to turn off an aversive light and recordings of 22 kHz ultrasound vocalizations (USVs) during acute restraint stress. For the conditioned fear paradigm, we used fear potentiated startle in an aversive context and conditioned freezing using an aversive context as the conditioned stimulus. In both tests of conditioned fear there were no gender or estrous cycle-linked differences in emotional reactivity. However, with respect to unconditioned fear, female rats in late diestrus showed greater emotional reactivity expressed as switch-off responses to a light environment and USVs in response to restraint compared to other phases of the cycle. These findings suggest that the hormonal profile during the late diestrous phase may predispose to up-regulated emotional reactivity in rats facing emotional challenges to unconditioned, but not conditioned fear- inducing stimuli.
80

Quantifying the Impacts of a Novel Predator: the Distinctive Case of the Oregon Spotted Frog (<i>Rana pretiosa</i>) and the Invasive American Bullfrog (<i>Rana (Aquarana) catesbeiana</i>)

Tidwell, Kyle Scott 21 March 2017 (has links)
The decline of the Oregon Spotted Frog (Rana pretiosa), a Pacific Northwest endemic now federally listed as threatened, has been attributed to several aspects of ecosystem alteration, primarily habitat degradation and loss. The introduced American Bullfrog (Rana (Aquarana) catesbeiana) has been widely implicated in those declines, but the basis of that contention has been difficult to characterize. The bullfrog occurring at every site of recent Oregon Spotted Frog extirpation has focused concern about its impact. Here, I present a suite of interconnected studies that examine the behavioral ecology of both species to better understand the potential for bullfrog-mediated Oregon Spotted Frog extirpation. I quantified Oregon Spotted Frog anti-predator behavior from the only known population successfully co-occurring with bullfrogs (Conboy Lake) and a population devoid of bullfrog impact (Big Marsh), and compared these behaviors to the predatory traits of the bullfrog. The initial study revealed that captive-reared individuals from the Oregon Spotted Frog population that has successfully co-occurred with bullfrogs respond faster to a predatory stimulus (measured as latency to response) than Oregon Spotted Frogs from a population not to exposed to bullfrogs. Subsequent field investigations of the approach distance allowed by a predator stimulus before taking evasive action (termed the flight initiation distance: FID) conducted with the Oregon Spotted Frog population co-occurring with bullfrogs first demonstrated that FID of recently metamorphosed bullfrogs is consistently greater than that of recently metamorphosed Oregon Spotted Frogs. Further, examination of FID across all post-metamorphic age classes of Oregon Spotted Frogs revealed that older frogs do not allow as close approach as recently metamorphosed Oregon Spotted Frogs. This age class shift in FID did not occur in the Oregon Spotted Frog population not exposed to bullfrogs. In the latter population, FID did not differ among age classes. Since the bullfrog might be driving this age-based change in anti-predator behavior, I explored the variation in strike distance of bullfrogs from the site of co-occurrence in both the field and laboratory to determine the extent of overlap with Oregon Spotted Frog FID. I found that the bullfrog strike distance significantly overlaps the FID of all ages of Oregon Spotted Frogs from the bullfrog-free site but only that of youngest (recently metamorphosed) frogs at the site of co-occurrence. Older Oregon Spotted Frogs from the site of co-occurrence generally escaped at distances greater than the strike distance of bullfrogs. I also collected > 880 bullfrogs from the site of co-occurrence and analyzed the stomach contents to assess their dietary trends. I found that bullfrogs consume Oregon Spotted Frogs at the site, but do not eat the larger (older) frogs. Moreover, the body size ratio between Oregon Spotted Frogs as prey and bullfrogs as predators suggests that nearly all of the adult size distribution of bullfrogs at Conboy would be incapable of preying on adult Oregon Spotted Frogs. Collectively, these studies strongly suggest that bullfrogs have altered the escape behavior of Oregon Spotted Frogs at Conboy Lake and that most adult Oregon Spotted Frogs at Conboy may have a size-based release from predation by bullfrogs. Implicit in this finding is that bullfrogs may pose a real threat via predation to other Oregon Spotted Frog populations with which they might come into contact where the distribution of bullfrog body sizes differ substantially from that at Conboy Lake.

Page generated in 0.0755 seconds