• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 3
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 8
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Short-term and time-dependent flexural behaviour of steel fibre-reinforced reactive powder concrete

Warnock, Robyn Ellen, Civil & Environmental, UNSW January 2006 (has links)
This thesis presents an experimental and theoretical study of the material and structural behaviour of a Steel-Fibre reinforced Reactive Powder Concrete (SF-RPC). The experimental program consisted of three phases. Phase 1 involved the development of a design mix for use throughout the remainder of the study. Phase 2 consisted of an in-depth investigation into the material properties of the mix. The final phase of the experimental component was the testing of 16 plain and prestressed SF-RPC beams. Twelve beams were tested under short-term loading to determine their cracking and ultimate moment capacity. The remaining 4 beams were used to investigate the time-dependent flexural behaviour of prestressed SF-RPC slabs. The material properties were measured using a range of short-term tests and included the compressive and flexural behaviour, static chord modulus of elasticity and crack mouth opening. In addition to the short-term tests, investigation into the time-dependent material behaviour was undertaken and included the creep and shrinkage characteristics of the material. The response of the material to various curing conditions was also investigated. The structural behaviour investigated included the short-term flexural moment-curvature response and load-deflection behaviour of beams and slabs along with the crack patterns of both plain and prestressed SF-RPC members. In addition to the investigations into the short-term flexural behaviour, a study into the time-dependent flexural behaviour was also undertaken. There are currently 2 available models for predicting the flexural response of plain and prestressed RPC cross-sections. The analytical phase of this investigation involved an evaluation of these models. Based on the experimental findings and analysis, a modified model was proposed for calculating the short-term flexural behaviour of plain and prestressed SF-RPC beams. The applicability of an age-adjusted effective modulus method for calculating the time-dependent deformations of prestressed SF-RPC slabs under various levels of sustained loads was also evaluated and found to be adequate with minor refinements.
2

Evaluation of a Tramway’s Track Slab in Conventionally Reinforced Concrete or Steel Fibre Concrete

Zioris, Stavros, Vranjkovina, Alija January 2015 (has links)
The dominant reinforcement used widely for concrete structures is conventional steel bars (rebars). Nevertheless, the perpetual effort toward evolution and development could not exclude the engineering field, thus new innovative and sophisticated methods are introduced. It is true that, due to lack of extended regulations and standards, the fibre reinforced concrete (FRC) was limited to non-structural applications. However, the last years the situation is changing rapidly and already the applications of FRC include actual structural members. The subject of the current thesis was a tramway’s track slab from “Sparvag City” project in Stockholm. The aim was to evaluate the track slab, in terms of alternative reinforcing ways. In particular three models were examined; model I – conventional reinforcement, model II – steel fibre reinforced concrete (SFRC) and model III – SFRC with conventional reinforcement. The assessment was performed from structural, regulations – compliance, economic and ergonomic perspective. A static linear analysis of the track slab was performed using Abaqus; a finite element analysis (FEA) software. The track slab was subjected only to mechanical loads (selfweight and traffic actions) and thus, the design internal forces were extracted. Thereafter, Eurocode 2 (EN 1992-1-1, 2004) and Swedish standards for FRC structures (SS 812310:2014) were utilized for the reinforcement design of the models. The design was performed in ultimate limit state (ULS), for bending moment and shear resistance, and in serviceability limit state (SLS), for stress limitation and crack control. Model I and III were successfully designed abiding with the respective regulations and requirements, while “only fibres” model was considered valid only for bending moment resistance according to SS 812310:2014. Consequently only models I and III were compared with each other. From the economic comparison it was obtained that model I was less expensive than model III, but on the other hand its construction time was larger. Furthermore model III contained significantly less total rebars’ mass in comparison to model I. This particularity was crucial for the ergonomic assessment. The human factors, that were relevant to the ergonomic assessment, improved the quality of the comparison and the extracted inferences, but also introduced aspects impossible to be put against economic facts as an equal quantity. Thus, there was not a final proposal as the best solution for the thesis subject. / Armeringen av betongkonstruktioner domineras av konventionell armering (armeringsjärn). Med den ständiga strävan mot utveckling och förbättring har inom teknikområdet nya innovativa och avancerade metoder introducerats. Det är på grund av bristen på normer, standarder som fiberarmerad betong begränsats till icke- bärande ändamål. Däremot har situationen förändrats under de senaste åren, redan idag kan man se konstruktioner där fiberarmering används till bärande ändamål. Amnet for den aktuella masterexamen var betongplatta i projektet ”Sparvag City” i Stockholm. Syftet var att utvärdera betongplattan, i form av att undersöka alternativa armeringsmöjligheter. I synnerhet undersöktes tre modeller; modell I- konventionellt armerad platta, modell IIstålfiberarmerad platta och modell III stålfiberarmerad platta kombinerad med konventionell armering. Modellernas möjligheter att uppfylla regelverkens krav undersöktes, men de jämfördes även ur ekonomiskt samt ergonomiskt perspektiv. En statisk linjär analys av betongplattan genomfördes i ett finit element program, Abaqus. Betongplattan utsattes för mekanisk belastning (egenvikt samt trafiklast) för vilken dimensionerande krafter extraherats. Därefter användes Eurocode 2 (EN 1992-1-1, 2004) och den svenska standarden för fiberarmerade betong konstruktioner (SS 812310:2014) för vidare konstruktionsberäkningar. Konstruktionsberäkningarna för betongplattan genomfördes i brottgränstillstånd för böjmoment samt tvärkraft, i brukgränsmotståndet undersöktes betongplattan för spänningsbegränsningar samt sprickkontroll. Konstruktionsberäkningarna kunde genomföras för modell I och III med de existerande föreskrifterna och kraven, men modellen med ”endast fibrer” kunde endast dimensionerna för böjmoment enligt SS 812310:2014. Därför kunde endast modell I och III fortsättningsvis jämföras med varandra. Från den ekonomiska jämförelsen erhölls det att modellen I var billigare än modell III, men att konstruktionstiden var längre. Dessutom var behoven för konventionell armering (armeringsjärn) betydligt mindre för modell III till skillnad från modell I. Modellernas innehåll av konventionell armering var avgörande för den ergonomiska bedömningen. Den mänskliga faktorn, som var relevanta för den ergonomiska bedömningens, gav jämförelsen av modellerna en annan dimension, där de viktiga mänskliga faktorerna
3

Construction in in-situ cast flat slabs using steel fibre reinforced concrete

Jarrat, Robert 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Fibre reinforced concrete (FRC) transforms concrete from a characteristically brittle material to one with a post-crack tensile residual capacity. Its application in industry has varied over the past of which the tensile properties have generally been used in the form of crack mitigation. More recently, the introduction of steel fibres has broadened this scope to structural applications in which the resisting tensile stresses that develop within a steel FRC (SFRC) element can be rather significant. This thesis reviews the existing practices and design models associated with SFRC and the suitability of its implementation as the sole form of reinforcement in in-situ cast flat slab systems. As a material SFRC is dependent on a number of factors which include the fibre type and volume, fibre distributions, element size, as well as the support and applied load conditions. Thus, its performance can be considered rather variable in comparison to conventional concrete should the incorrect practices be implemented. In order to adequately define the material characteristics, it is necessary to use test procedures that accurately reflect on the intended structural application. As a result a number of test procedures have been developed. In addition to this, the post-crack material performance is associated with a non-linear behaviour. This attribute makes the design of structural SFRC elements rather difficult. In an attempt to simplify this, existing design models define stress-strain or stress-crack width relations in which assumptions are made regarding the cross-sectional stress distribution at specified load states. This thesis takes on two parts in defining the suitability of SFRC as the sole form of reinforcement in flat slab systems. The first is a theoretical investigation regarding the micro and macro scale material performance of SFRC, the practices that exist in defining the material properties and its application in structural systems (particularly suspended slab systems), and a breakdown of the existing design models applicable to strain softening deflection hardening SFRC materials. The second part is an experimental program in which the fresh state and hardened state material properties of specified SFRC mix designs defined through flow and beam testing respectively. These properties are then implemented in the design and construction of full scale flexural and punching shear test slabs in an attempt to verify the theory applied. The investigation reveals that the use of SFRC significantly improves the ductility of concrete systems in the post-crack state through fibre crack bridging. This ductility can result in deflection hardening of flat slab systems in which the redistribution of stresses increases the load carrying capacity once cracking has taken place. However, the performance of large scale test specimens is significantly influenced by the construction practices implemented in which the material variability increases as a result of non-uniform fibre distributions. The results indicate that the load prediction models applied have potential to adequately predict the ultimate failure loads of SFRC flat slab systems but however cannot account for possible non-uniform fibre distributions which could result in premature failure of the system. / AFRIKAANSE OPSOMMING: Vesel versterkte beton (VVB) verander beton van die kenmerkende uiters bros material na ‘n material met ‘n residuele post-kraak trekkapasiteit. Die toepassing daarvan in die bedryf het in die verlede gewissel en die trek eienskappe is oor die algemeen gebruik vir kraak vermindering. Meer onlangs het die bekenstelling van staal vesel hierdie omvang verbreed na die strukturele toepassings waar trekspannings wat ‘n VVB element kan weerstaan noemenswaardig kan wees. Hierdie tesis ondersoek bestaande praktyke en ontwerpmodelle met die oog op staalvesel versterkte beton (SVVB) en die geskiktheid van die implementering daarvan as die enigste vorm van bekisting in in-situ gegiete plat blad stelsels. As ‘n materiaal, is SVVB afhanklik van ‘n aantal faktore wat die tipe vesel en volume, vesel verspreiding, element grootte, sowel as die randvoorwaardes tipe aangewende las insluit. As gevolg hiervan, kan die gedrag van SVVB, wat korrek geïmplimenteer word, as redelik varieerbaar beskou word wanneer dit met konvensionele beton vergelyk word. Ten einde die materiaaleienskappe voldoende te definieer, is dit noodsaaklik dat prosedures wat die strukturele toepassing akuraat voorstel, getoets word en daarom is ‘n aantal toets prosedures ontwikkel. Verder het die post-kraak materiaalgedrag ‘n nie-lineêre verband wat struktuurontwerp met SVVB redelik moeilik maak. Om dit te vereenvoudig, definieer bestaande ontwerpmodelle spanning-vervorming of spanning-kraakwydte verhoudings waarin aannames gemaak word ten opsigte van die spanningsverdeling oor ‘n snit, gegewe sekere lastoestande. Hierdie studie bestaan uit twee dele wat die geskiktheid van SVVB as die enigste vorm van bikisting in plat blad stelsels definieer. Die eerste deel bestaan uit ‘n teoretiese ondersoek wat handel oor die mikro- en makro-skaal materiaalgedrag van SVVB, die praktyke wat bestaan om die materiaaleienskappe en toepassing in strukturele sisteme (spesifiek opgelegde blad stelsels) te definieer, en ‘n uiteensetting van die bestaande ontwerpmodelle wat van toepassing is vir defleksie as gevolg van vervormingsversagting wat SVVB material verhard. Die tweede deel bestaan uit ‘n eksperimentele program waarin die materiaaleienskappe van gespesifiseerde SVVB meng-ontwerpe in die vars toestand en in die verharde toestand gedefinieer word deur middel van vloei- en balktoetse onderskeidelik. Hierdie eienskappe word dan toegepas vir die ontwerp en konstruksie van volskaalse buig- en ponsskuif toetsblaaie ten einde die modelle en teorie wat toegepas is, te bevestig. Die ondersoek toon dat die gebruik van SVVB die duktiliteit van beton sisteme noemenswaardig verbeter in die post-kraak toestand deur kraak oorbrugging. Hierdie duktiliteit kan defleksie verharding van plat blad stelsels veroorsaak waarin die herverdeling van spannings, nadat kraking plaasgevind het, die lasdraende kapasiteit verhoog. Die gedrag van die grootskaalse toetsmonsters word egter noemenswaardig beïnvloed deur die konstruksiemetodes wat geïmplementeer word waarin die materialveranderlikheid toeneem as ‘n gevolg van nie-uniforme vesel verdelings. Die resultate dui daarop dat die modelle wat toegepas is om die laste te voorspel, die potensiaal het om die grens falingslas van SVVB plat blad stelsel voldoende te voorspel, maar neem nie moontlike nie-uniforme veselverdelings wat kan lei tot vroeë faling van die stelsel in ag nie.
4

Investigating the tensile creep of steel fibre reinforced concrete

Mouton, Christiaan Johannes 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Research in concrete has advanced to such an extent that it is now possible to add steel fibres to concrete in order to improve its durability and ductility. This led to a research group in Europe, FIB, who has provided guidelines to designing Steel Fibre Reinforced Concrete (SFRC) structures. They have found that it is possible for SFRC beams in flexure to be in static equilibrium. However, the time-dependent behaviour of SFRC has not been researched fully and it requires further investigation. When looking at a concrete beam in flexure there are two main stress zones, the compression zone and the tension zone, of which the tensile zone will be of great interest. This study will report on the investigation of the tensile time-dependent behaviour of SFRC in order to determine how it differs from conventional concrete. The concrete has been designed specifically to exhibit strain-softening behaviour so that the material properties of SFRC could be investigated fully. Factors such as shrinkage and tensile creep of SFRC were of the greatest importance and an experimental test setup was designed in order to test the tensile creep of concrete in a simple and effective manner. Comparisons were be made between the tensile creep behaviour of conventional concrete and SFRC where emphasis was placed on the difference between SFRC specimens before and after cracking occurred in order to determine the influence of steel fibre pull-out. The addition of steel fibres significantly reduced the shrinkage and tensile creep of concrete when un-cracked. It was however found that the displacement of fibre pull-out completely overshadowed the tensile creep displacements of SFRC. It was necessary to investigate what effect this would have on the deflection of SFRC beams in flexure once cracked. Viscoelastic behaviour using Maxwell chains were used to model the behaviour of the tensile creep as found during the tests and the parameters of these models were used for further analyses. Finite Element Analyses were done on SFRC beams in flexure in order simulate creep behaviour of up to 30 years in order to determine the difference in deflections at mid-span between un-cracked and pre-cracked beams. The analyses done showed that the deflections of the pre-cracked SFRC beams surpassed the requirements of the Serviceability Limit States, which should be taken into account when designing SFRC beams. / AFRIKAANSE OPSOMMING: Die navorsing in beton het gevorder tot so ‘n mate dat dit nou al moontlik is om staal vesels by die beton te voeg sodat dit beton se duursaamheid en duktiliteit te verbeter. Dit het gelei tot ‘n groep in Europa, FIB, wat dit moontlik gemaak het om Staal Vesel Beton (SVB) strukture te ontwerp. Hulle het gevind dat dit moontlik is vir SVB balke om in statiese ewewig te wees tydens buiging. Die tyd afhanklike gedrag van SVB is egter nog nie deeglik ondersoek nie en benodig dus verdure ondersoek. Wanneer ‘n balk in buiging aanskou word kan twee hoof spanningzones identifiseer word, ‘n druk zone en ‘n trek zone, waarvan die trek zone van die grootste belang is. Hierdie studie gaan verslag lewer oor die ondersoek van tyd-afhanklike trekgedrag van SVB om te bepaal hoe dit verskil van konvensionele beton. Die beton was spesifiek ontwerp om vervormingsversagtende gedrag te wat maak dat die materiaal eienskappe van SVB ten volle ondersoek kan word. Faktore soos krimp en die trekkruip van SVB was van die grootste belang en ‘n eksperimentele toets opstelling was ontwerp om die trekkruip van beton op ‘n eenvoudige en effektiewe manier te toets. Daar was vergelykings getref tussen die trekkruip gedrag van konvensionele beton en SVP en groot klem was geplaas op die verskil tussen SVB monsters voor en na die monsters gekraak het om te bepaal wat die invloed was van staalvesels wat uittrek. Die byvoeging van staalvesels het beduidend die kruip en trekkruip van beton verminder. Daar was alhoewel gevind dat die verplasing van die uittrek van staalvesels heeltemal die trekkruip verplasings van SVB oorskadu het. Dit was nodig om te sien watse effek dit op die verplasing van SVB balke in buiging sal hê. Viskoelastiese gedrag deur Maxwell kettings was gebruik om die gedrag van trekkruip, soos gevind deur die toetse, te modelleer en die parameters van hierdie modelle was verder gebruik vir analises. Eindige Element Analises was gedoen op SVB balke in buiging om die trekkruip gedrag tot op 30 jaar te simuleer op die verskil tussen die defleksies by midspan tussen ongekraakte en vooraf gekraakte balke te vind. Die analises het gewys dat die defleksies van die vooraf gekraakte balke nie voldoen het aan die vereistes van die Diensbaarheid limiete nie, wat in ag geneem moet word wanneer SVB balke ontwerp word.
5

Shear Capacity of Steel Fibre Reinforced Concrete Beams without Conventional Shear Reinforcement

Mondo, Eleonora January 2011 (has links)
While the increase in shear strength of Steel Fibre Reinforced Concrete (SFRC) is well recognized, it has yet to be found common application of this material in building structures and there is no existing national standard that treats SFRC in a systematic manner. The aim of the diploma work is to investigate the shear strength of fibre reinforced concrete beams and the available test data and analyse the latter against the mostpromising equations available in the literature. The equations investigated are:Narayanan and Darwish’s formula, the German, the RILEM and the Italian guidelines. Thirty articles, selected among over one hundred articles taken from literature, have been used to create the database that contains almost 600 beams tested in shear. This large number of beams has been decreased to 371 excluding all those beams and test that do not fall within the limitation stated for this thesis. Narayanan and Darwish’s formula can be utilized every time that the fibre percentage, the type of fibres, the beam dimensions, the flexural reinforcement and the concrete strength class have been defined. On the opposite, the parameters introduced in the German, the RILEM and the Italian guidelines always require a further characterization of the concrete (with bending test) in order to describe the post‐cracking behaviour. The parameters involved in the guidelines are the residual flexural tensile strengths according to the different test set‐ups. A method for predicting the residual flexural tensile strength from the knowledge of the fibre properties, the cylindrical compressive strength of the concrete and the amount of fibres percentage is suggested. The predictions of the shear strength, obtained using the proposed method for the residual flexural tensile strength, showed to be satisfactory when compared with the experimental results. A comparison among the aforementioned equations corroborate the validity of the empirical formulations proposed by Narayanan and Darwish nevertheless only the other equations provide a realistic assessments of the strength, toughness and ductility of structural elements subjected to shear loading. Over the three investigated equations, which work with the post‐cracking characterization of the material, the Italian guideline proposal is the one that, due to its wide domain of validity and the results obtained for the gathered database of beams, has been selected as the most reliable equation.
6

Moment redistribution behaviour of SFRC members with varying fibre content

Mohr, Arno Wilhelm 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Steel fibre reinforced concrete (SFRC) is the most prominent fibre reinforced concrete composite that was engineered to enhance the material’s post-cracking behaviour. In certain situations it is utilised to replace conventional reinforcement and considered to be more cost-efficient. The purpose of this research is to characterise the moment redistribution behaviour of a statically indeterminate SFRC structure with varying volumes of fibres, with the focus on the development of the moment redistribution accompanied by the rotation of the plastic hinges at the critical sections in the structure. The material properties were characterised with a series of experimental tests. The compression behaviour was obtained with uniaxial compression tests while the uniaxial tensile behaviour was obtained with an inverse analysis performed according to flexural test results. These properties were utilised to derive a theoretical moment-curvature relation for each SFRC member which supplied the basis for the characterised moment-rotation behaviour and the finite element analyses (FEA) performed on the statically indeterminate structure. Experimental tests were conducted on the statically indeterminate structure in laboratory conditions to validate the theoretical findings. For the different SFRCs the material properties in compression were similar, while it resulted in an increased tensile resistance with an increase in the volume steel fibres. The theoretical momentcurvature and moment-rotation responses also indicated an increased structural capacity and member ductility with an increase in the volume fibres. From the finite element analyses the computational moment redistribution-plastic rotation relations were obtained. It was found that the final amount of moment redistribution decreased with an increase in the fibre volume, but that the rotational capacity increased. It was found that the experimental moment-curvature and moment-rotation results correlate well with the theoretical predictions. Also, unexpected structural behaviour was observed, but the issue was addressed with applicable computational analyses which confirmed the possible causes. It was concluded that the computational moment redistribution approximations were reasonably accurate. A parameter study indicated that the crack band width differed among the different SFRC members. / AFRIKAANSE OPSOMMING: Staal vesel versterkte beton (SVVB) is die mees vooraanstaande vesel versterkte beton mengsel wat ontwikkel is om die materiaalgedrag na kraakvorming te verbeter. In sekere situasies kan dit gebruik word om konvensionele staal te vervang en lei soms to koste vermindering . Die einddoel van die studie is om die moment herverdeling gedrag te karaktiseer vir ‘n statiese onpebaalbare SVVB struktuur deur die invloed van verskillende volumes vesels en die rotasie kapasiteit by die kritieke posisies in ag te neem. Die materiaal eienskappe was geidentifiseer met ‘n reeks eksperimentele toetse. Die druk gedrag was geïdentifiseer deur eenassige druktoetse, terwyl die eenassige trek gedrag bekom is met die implementasie van ‘n inverse analise van die uitgevoerde buig toetse. Hierdie eienskappe is gebruik om die teoretise moment-kromming verhouding vir elke mengsel te bekom. Hierdie verhoudings word as die basis bestempel vir die teoretiese moment-rotasie verhouding en die eindige element analises (EEA) wat op ‘n staties onbepaalbare struktuur toegepas is. Eksperimentele toetse is op hierdie voorgestelde struktuur toegepas om die teoretiese verwagtings te verifieer. Dit is gevind dat die druk gedrag ooreenstem tussen die verskillende mengsels, alhoewel ‘n toename in die trek kapasiteit ervaar is met ‘n toename in die volume vesels. Die teoretiese momentkromming en moment-rotasie verwantskappe stel ook voor dat die strukturele kapasiteit en duktiliteit toeneem met ‘n toename in die volume vesels. Die teoretiese moment herverdeling-plastiese rotasie verwantskapppe is verkry deur middel van die eindige element analises. Dit is gevind dat die aantal moment herverdeling by faling afgeneem het vir ‘n toename in die volume vesels, maar dat dit to ‘n groter rotasie kapasiteit gelei het. Van die eksperimentele resultate is dit afgelei dat die teoretiese moment-kromming en momentrotasie verwantskappe goeie benaderings voorstel. Sekere invloede van die opstelling het daartoe gelei dat onverwagte strukturele gedrag bekom is, maar die moontlike invloede is verifieer met eindige element analises. Dit is afgelei dat die teoretiese beramings van die moment herverdeling gedrag redelik akkuraat is. ‘n Parameter studie het getoon dat die kraak spasiëring verskil tussen mengsels met verskillende volumes vesels.
7

Performance of Steel Fibre Reinforced Concrete Columns under Shock Tube Induced Shock Wave Loading

Burrell, Russell P. 19 November 2012 (has links)
It is important to ensure that vulnerable structures (federal and provincial offices, military structures, embassies, etc) are blast resistant to safeguard life and critical infrastructure. In the wake of recent malicious attacks and accidental explosions, it is becoming increasingly important to ensure that columns in structures are properly detailed to provide the ductility and continuity necessary to prevent progressive collapse. Research has shown that steel fibre reinforced concrete (SFRC) can enhance many of the properties of concrete, including improved post-cracking tensile capacity, enhanced shear resistance, and increased ductility. The enhanced properties of SFRC make it an ideal candidate for use in the blast resistant design of structures. There is limited research on the behaviour of SFRC under high strain rates, including impact and blast loading, and some of this data is conflicting, with some researchers showing that the additional ductility normally evident in SFRC is absent or reduced at high strain loading. On the other hand, other data indicates that SFRC can improve toughness and energy-absorption capacity under extreme loading conditions. This thesis presents the results of experimental research involving tests of scaled reinforced concrete columns exposed to shock wave induced impulsive loads using the University of Ottawa Shock Tube. A total of 13 half-scale steel fibre reinforced concrete columns, 8 with normal strength steel fibre reinforced concrete (SFRC) and 5 with an ultra high performance fibre reinforced concrete (UHPFRC), were constructed and tested under simulated blast pressures. The columns were designed according to CSA A23.3 standards for both seismic and non-seismic regions, using various fibre amounts and types. Each column was exposed to similar shock wave loads in order to provide direct comparisons between seismic and non-seismically detailed columns, amount of steel fibres, type of steel fibres, and type of concrete. The dynamic response of the columns tested in the experimental program is predicted by generating dynamic load-deformation resistance functions for SFRC and UHPFRC columns and using single degree of freedom dynamic analysis software, RCBlast. The analytical results are compared to experimental data, and shown to accurately predict the maximum mid-span displacements of the fibre reinforced concrete columns under shock wave loading.
8

Performance of Steel Fibre Reinforced Concrete Columns under Shock Tube Induced Shock Wave Loading

Burrell, Russell P. 19 November 2012 (has links)
It is important to ensure that vulnerable structures (federal and provincial offices, military structures, embassies, etc) are blast resistant to safeguard life and critical infrastructure. In the wake of recent malicious attacks and accidental explosions, it is becoming increasingly important to ensure that columns in structures are properly detailed to provide the ductility and continuity necessary to prevent progressive collapse. Research has shown that steel fibre reinforced concrete (SFRC) can enhance many of the properties of concrete, including improved post-cracking tensile capacity, enhanced shear resistance, and increased ductility. The enhanced properties of SFRC make it an ideal candidate for use in the blast resistant design of structures. There is limited research on the behaviour of SFRC under high strain rates, including impact and blast loading, and some of this data is conflicting, with some researchers showing that the additional ductility normally evident in SFRC is absent or reduced at high strain loading. On the other hand, other data indicates that SFRC can improve toughness and energy-absorption capacity under extreme loading conditions. This thesis presents the results of experimental research involving tests of scaled reinforced concrete columns exposed to shock wave induced impulsive loads using the University of Ottawa Shock Tube. A total of 13 half-scale steel fibre reinforced concrete columns, 8 with normal strength steel fibre reinforced concrete (SFRC) and 5 with an ultra high performance fibre reinforced concrete (UHPFRC), were constructed and tested under simulated blast pressures. The columns were designed according to CSA A23.3 standards for both seismic and non-seismic regions, using various fibre amounts and types. Each column was exposed to similar shock wave loads in order to provide direct comparisons between seismic and non-seismically detailed columns, amount of steel fibres, type of steel fibres, and type of concrete. The dynamic response of the columns tested in the experimental program is predicted by generating dynamic load-deformation resistance functions for SFRC and UHPFRC columns and using single degree of freedom dynamic analysis software, RCBlast. The analytical results are compared to experimental data, and shown to accurately predict the maximum mid-span displacements of the fibre reinforced concrete columns under shock wave loading.
9

Performance of Steel Fibre Reinforced Concrete Columns under Shock Tube Induced Shock Wave Loading

Burrell, Russell P. January 2012 (has links)
It is important to ensure that vulnerable structures (federal and provincial offices, military structures, embassies, etc) are blast resistant to safeguard life and critical infrastructure. In the wake of recent malicious attacks and accidental explosions, it is becoming increasingly important to ensure that columns in structures are properly detailed to provide the ductility and continuity necessary to prevent progressive collapse. Research has shown that steel fibre reinforced concrete (SFRC) can enhance many of the properties of concrete, including improved post-cracking tensile capacity, enhanced shear resistance, and increased ductility. The enhanced properties of SFRC make it an ideal candidate for use in the blast resistant design of structures. There is limited research on the behaviour of SFRC under high strain rates, including impact and blast loading, and some of this data is conflicting, with some researchers showing that the additional ductility normally evident in SFRC is absent or reduced at high strain loading. On the other hand, other data indicates that SFRC can improve toughness and energy-absorption capacity under extreme loading conditions. This thesis presents the results of experimental research involving tests of scaled reinforced concrete columns exposed to shock wave induced impulsive loads using the University of Ottawa Shock Tube. A total of 13 half-scale steel fibre reinforced concrete columns, 8 with normal strength steel fibre reinforced concrete (SFRC) and 5 with an ultra high performance fibre reinforced concrete (UHPFRC), were constructed and tested under simulated blast pressures. The columns were designed according to CSA A23.3 standards for both seismic and non-seismic regions, using various fibre amounts and types. Each column was exposed to similar shock wave loads in order to provide direct comparisons between seismic and non-seismically detailed columns, amount of steel fibres, type of steel fibres, and type of concrete. The dynamic response of the columns tested in the experimental program is predicted by generating dynamic load-deformation resistance functions for SFRC and UHPFRC columns and using single degree of freedom dynamic analysis software, RCBlast. The analytical results are compared to experimental data, and shown to accurately predict the maximum mid-span displacements of the fibre reinforced concrete columns under shock wave loading.
10

Punching Shear Capacity of Fibre Reinforced Concrete Slabs with Conventional Reinforcement : Computational analysis of punching models

Tazaly, Zeinab January 2012 (has links)
Steel fibre reinforced concrete is not a novel concept, it has been around since the mid-1900s, but despite its great success in shotcrete-reinforced rock walls and industrial floors it has not made any impact on either beams or elevated slab. Apparently, the absence of standards is the main reason. However, the combination of steel fibre reinforced concrete and conventional reinforcement has in many researches shown to emphasize good bearing capacrty. In this thesis, two punching shear capacity models have been analysed and adapted on 136 test slabs perfomred by previous researchers. The first punching model altemative is proposed in DAfStB - BetonKalender 201l, and the second punching model alternative is established in Swedish Concrete Association - Report No. 4 1994. Due to missing information of the experimental measured residual tensile strength, a theoretical residual tensile strength was estimated in two different manners to be able to adapt the DAfStB punching model altemative on the refereed test slabs. The first solution is an derivation of a suggestion made by Silfiverbrand (2000) and the second solution is drawn from a proposal made by Choi etal. (2007). The result indicates that the SCA punching model alternative is easier to adapt and provides the most representative result. Also DAfStb altemative with the second solution of estimating the residual strength contributes to arbitrary result, however due to the uncertainty of the estimation of the residual tensile strength, the SCA punching model is recommended to be applied until further investigation can confirm the accuracy of the DAfStB alternative with experimentally obtained residual tensile strength.

Page generated in 0.065 seconds