• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation de la technique de stimulation transcrânienne par courant alternatif pour optimiser l’augmentation de la puissance alpha

Pelletier-De Koninck, Béatrice 08 1900 (has links)
La stimulation transcrânienne par courant alternatif (tACS) est une technique de stimulation non invasive du cerveau qui est d’un intérêt croissant, entre autres pour ses effets sur les ondes cérébrales intrinsèques. Par opposition à la stimulation transcranienne par courant direct (tDCS), la tACS permet l’administration d’un courant sinusoïdal ajusté à la fréquence endogène individuelle d’un individu. Les oscillations cérébrales constituant la bande de fréquence alpha (8-12 Hz) sont parmi les plus étudiées en raison de leurs associations variées avec les fonctions et états cérébraux. Un nombre important d’études ont montré l’efficacité de la tACS de diverses façons pour augmenter la puissance de l’activité EEG dans la bande de fréquence alphal’onde alpha. Cependant, l’hétérogénéité des paramètres de stimulation, particulièrement l’intensité, rend l’implémentation de nouveaux protocoles ardue. En effet, il n’y a actuellement aucun consensus sur les paramètres optimaux de stimulation pour moduler l’activité EEG dans la bande de fréquence alphal’onde alpha. Ce projet a pour but de documenter l’impact différentiel de contrôler les caractéristiques de stimulation tACS, soit l’intensité, la fréquence et le site (antérieur ou postérieur) de stimulation. À cette fin, 20 participants en santé ont pris part à notre étude, chacun soumis à 4 conditions de stimulation tACS, échelonnées sur 2 jours (2 blocs par jour). Pour chaque condition expérimentale, la stimulation tACS a été administrée de façon continue via 2 électrodes pendant 20 minutes. Deux conditions actives de tACS ont été réalisées aux sites PO7-PO8 (Système International EEG 10-10), l’une à Fréquence Alpha Individuelle (IAF) et l’autre à Fréquence Theta Individuelle (ITF), qui ont été prédéterminées par une session EEG, au repos et les yeux ouverts, de 5 minutes a priori. Deux conditions de stimulation ont été effectuées avec les électrodes de stimulation positionnées aux sites F3F4 (Système International EEG 10-20), à IAF ou à intensité SHAM (montée de courant 15 secondes seulement). L’intensité de stimulation a été ajustée en respectant le degré de confort de chaque participant, selon une échelle standardisée de désagréabilité (≤ 40 sur 100), et ne pouvait excéder 6 mA. La seconde séance journalière était exécutée 180 minutes après la première séance de tACS. Afin d’évaluer les niveaux de fatigue, les participants ont eu à réaliser une tâche psychomotrice de vigilance (PVT) durant la tACS. Toutes les conditions ont été contrebalancées. Les résultats suggèrent que la tACS ajustée à IAF a été plus efficace que les conditions ITF et SHAM afin d’augmenter la puissance alpha. Pour les deux sites de stimulation IAF tACS, l’augmentation de puissance spectrale la plus importante a été obtenue en tACS antérieure; par contre cette augmentation est distale et spécifique aux générateurs alpha, en pariéto-occipital. Pour ce qui est du montage tACS postérieur, l’augmentation alpha est observée pour les deux régions cérébrales, frontale et postérieure, tout en démontrant un effet d’augmentation préférentiel sur la puissance alpha, versus les autres bandes de fréquence theta et beta. Cette étude propose une évidence préliminaire que la tACS ajustée à IAF à plus hautes intensités est bien tolérée et démontre que l’optimisation de la technique peut avoir un impact prometteur dans le domaine. / Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique increasingly used for its modulating effect on intrinsic brain oscillations. In comparison to transcranial direct current stimulation (tDCS), tACS allows the administration of a sinusoidal current adjusted to one’s endogenous measured frequency. Oscillations within the alpha band range (8-12 Hz) are among the most studied, given their various associations with brain functions and states. A number of studies have proven to be effective in increasing alpha power using tACS through diverse methods. However, the heterogeneity of stimulation parameters, notably the intensity, makes it difficult to implement new tACS protocol. Indeed, there is currently no consensus on optimal stimulation parameters to modulate the alpha rhythm. The current project aimed to document the differential impact of controlling for key tACS stimulation characteristics, namely the stimulation intensity, the stimulation frequency and the stimulation site (anterior or posterior). To this end, we conducted a study, in which 20 healthy participants underwent four different tACS conditions conducted over two non-consecutive days (2 blocks per day). In each experimental condition, tACS stimulation was continuously delivered via two electrodes for a total duration of 20 minutes. Two active tACS conditions were administered at electrode sites PO7-PO8 (10-10 International System) at either the Individual’s Alpha Frequency (IAF) or at the Individual’s Theta Frequency (ITF), which were a priori determined via a 5-minute pre-stimulation EEG recording with eyes open at rest. Two stimulation conditions were performed with stimulating electrodes positioned over F3-F4 electrode sites, at IAF or sham intensity (ramp-up of 15 seconds). The stimulation intensity was set according to the participant’s own rating of unpleasantness on a standardized unpleasantness scale (≤ 40 out of 100) and could not exceed 6 mA. The second tACS condition was administered 180 minutes after the first tACS condition. To assess for fatigue levels, participants were asked to perform a psychomotor vigilance task (PVT) during tACS. All conditions were counterbalanced. Results suggest that alpha tACS stimulation adjusted to IAF was effective in increasing alpha power. Of the two stimulating sites, anterior alpha tACS stimulation induced greatest increases in alpha power, maximal when set to IAF, although specific to alpha generators’ site. Posterior alpha tACS stimulation showed overall increase both over frontal and posterior brain areas. These effects persisted at the 60-minute recording for the anterior tACS only. The current pilot study provides preliminary evidence that posterior tACS stimulation adjusted to IAF at higher intensities is well tolerated and shows potential as an effective brain stimulation technique to increase posterior alpha power.
2

L'effet antalgique de stimulations corticales non invasives par stimulation magnétique transcrânienne répétée (rTMS). : Confirmation de l'intérêt antalgique de la stimulation du cortex moteur primaire et exploration du potentiel d'une nouvelle cible corticale : le cortex somatosensoriel secondaire / The analgesic effect of non-invasive cortical stimulations by repeated transcranial magnetic stimulation (rTMS) : The analgesic interest of primary motor cortex stimulation and the potential of a new cortical target : the secondary somatosensory cortex

Quesada, Charles 05 December 2018 (has links)
La douleur neuropathique centrale est une séquelle fréquente après une atteinte du système nerveux centrale. L’impact négatif de ces douleurs sur la qualité de vie des patients ainsi que l’efficacité modérée (40% de répondeurs) des traitements de 1ère intention font de la recherche de thérapies alternatives un enjeu clinique majeur. Depuis plusieurs années, la technique de stimulation magnétique transcrânienne répétée (rTMS) est présentée comme un outil intéressant pour soulager ce type de douleur sans pour autant que son efficacité clinique n’ait été clairement démontrée. Ce travail de thèse s’attache donc à investiguer l’efficacité de la rTMS pour traiter les douleurs neuropathiques centrales. Nous avons dans un premier temps mis en évidence, dans une étude observationnelle, qu’un minimum de 4-5 séances sur deux mois de rTMS à 20HZ sur le cortex moteur primaire (M1) produit un soulagement de la douleur pouvant se maintenir même après une année de stimulation. Afin d’écarter un possible effet placebo, nous avons objectivé l’efficacité antalgique en répliquant ce protocole dans une étude clinique randomisée, contrôlée, en groupes croisés. Les résultats obtenus confirment ceux de l’étude observationnelle puisque que l’effet antalgique de la rTMS active était significativement supérieure à la stimulation placebo pour le critère principal (% de soulagement, +33%) ou l’intensité douloureuse (EVA, -19%), avec 47% de répondeurs. Pour les patients non-répondeurs à la stimulation de M1, nous avons également testé contre placebo, dans une étude randomisée, l’efficacité d’une cible alternative : le cortex somesthésique secondaire (S2). Aucun des patients n’a été soulagé par cette stimulation mais le faible effectif de cette étude ne nous permet pas de conclure définitivement à l’absence d’effet antalgique. Enfin, compte tenu de l’utilisation croissante de nouvelles cibles corticales plus profondes, nous avons à partir de l’enregistrement du champ-magnétique produit par la rTMS dans différents milieux (l’air et modèle ex-vivo), proposé un modèle de distribution de ce champ selon la profondeur de la cible et le type de sonde de stimulation utilisé. Pour conclure, ces travaux objectivent l’effet antalgique de 4 séances de rTMS à 20Hz de M1 sur les douleurs neuropathiques centrales, validant ainsi son utilisation lorsque les traitements de 1ère intention ont échoué. Les résultats obtenus par la stimulation de S2 ainsi que par la modélisation du champ magnétique doivent permettre à de futures études d’explorer de nouvelles cibles corticales pour les patients qui restent encore en échec de traitement. / Central neuropathic pain is a common sequelae after central nervous system injury. Its negative consequences on the quality of life and the moderate efficacy (40% of responders) of first-line treatments make the search for alternative therapies a major clinical challenge. For several years, the technique of repeated transcranial magnetic stimulation (rTMS) is presented as an interesting tool to relieve this sort of pain even though its clinical efficacy has not been clearly demonstrated. The aim of this thesis was to investigate the effectiveness of rTMS to relieve central neuropathic pain.We first demonstrated, in an observational study, that a minimum of 4-5 sessions over two months of rTMS at 20HZ on the primary motor cortex (M1) produces pain relief that can be maintained even after a year of stimulation. In order to rule out a possible placebo effect, we objectified the analgesic efficacy by replicating this protocol in a randomized, controlled, cross-over clinical study. The results obtained confirm those of the observational study since the analgesic effect of the active rTMS was significantly greater than the placebo stimulation for the main criterion (% of pain relief, +33%) or pain intensity (VAS, -19%), with 47% of responders. For patients who did not respond to M1 stimulation, we also tested the efficacy of an alternative target in a randomized study: the secondary somatosensory cortex (S2). None of the patients were relieved by this stimulation, but the small size of this study does not allow us to definitively conclude that there is no analgesic effect. Finally, given the increasing use of new deeper cortical targets in rTMS for pain treatment, we have from the recording of the magnetic field produced by the rTMS in different media (air and ex-vivo model), proposed a magnetic-field distribution model according to the depth of the target and the type of stimulation coils used.To conclude, this work objectify the analgesic effect of 4 rTMS sessions at 20 Hz of M1 to relieve central neuropathic pain, validating its use when first-line treatments have failed. The results obtained by S2 stimulation as well as magnetic field modeling should allow future studies to explore new cortical targets for patients who are still failing treatment
3

The role of network interactions in timing-dependent plasticity within the human motor cortex induced by paired associative stimulation

Conde Ruiz, Virginia 07 November 2013 (has links)
Spike timing-dependent plasticity (STDP) has been suggested as one of the key mechanism underlying learning and memory. Due to its importance, timing-dependent plasticity studies have been approached in the living human brain by means of non-invasive brain stimulation (NIBS) protocols such as paired associative stimulation (PAS). However, contrary to STDP studies at a cellular level, functional plasticity induction in the human brain implies the interaction among target cortical networks and investigates plasticity mechanisms at a systems level. This thesis comprises of two independent studies that aim at understanding the importance of considering broad cortical networks when predicting the outcome of timing-dependent associative plasticity induction in the human brain. In the first study we developed a new protocol (ipsilateral PAS (ipsiPAS)) that required timing- and regional-specific information transfer across hemispheres for the induction of timing-dependent plasticity within M1 (see chapter 3). In the second study, we tested the influence of individual brain structure, as measured with voxel-based cortical thickness, on a standard PAS protocol (see chapter 4). In summary, we observed that the near-synchronous associativity taking place within M1 is not the only determinant influencing the outcome of PAS protocols. Rather, the online interaction of the cortical networks integrating information during a PAS intervention determines the outcome of the pairing of inputs in M1.
4

Neurobiological mechanisms of control in alcohol use disorder – Moving towards mechanism-based non-invasive brain stimulation treatments

Ghin, Filippo, Beste, Christian, Stock, Ann-Kathrin 23 January 2023 (has links)
Alcohol use disorder (AUD) is characterized by excessive habitual drinking and loss of control over alcohol intake despite negative consequences. Both of these aspects foster uncontrolled drinking and high relapse rates in AUD patients. Yet, common interventions mostly focus on the phenomenological level, and prioritize the reduction of craving and withdrawal symptoms. Our review provides a mechanistic understanding of AUD and suggests alternative therapeutic approaches targeting the mechanisms underlying dysfunctional alcohol-related behaviours. Specifically, we explain how repeated drinking fosters the development of rigid drinking habits and is associated with diminished cognitive control. These behavioural and cognitive effects are then functionally related to the neurobiochemical effects of alcohol abuse. We further explain how alterations in fronto-striatal network activity may constitute the neurobiological correlates of these alcohol-related dysfunctions. Finally, we discuss limitations in current pharmacological AUD therapies and suggest non-invasive brain stimulation (like TMS and tDCS interventions) as a potential addition/alternative for modulating the activation of both cortical and subcortical areas to help re-establish the functional balance between controlled and automatic behaviour.

Page generated in 0.0955 seconds