Spelling suggestions: "subject:"stockage"" "subject:"stockages""
271 |
Matériaux hydrures pour le stockage irréversible ou réversible de l’hydrogène / Hydrides based materials for irreversible and reversible hydrogen storageYu, Hao 03 December 2012 (has links)
L’utilisation des combustibles fossiles (énergies non renouvelables) est responsable de l’augmentation de la concentration en gaz à effet de serre dans l’atmosphère. Lors de l'examen des solutions de rechange, l’hydrogène comme vecteur énergétique est le plus séduisant. Le stockage de l’hydrogène en phase solide sous forme d’hydrures, est l’une des solutions non polluantes futures pour le stockage et le transport de l’énergie. Parmi les matériaux candidats, le borohydrure de sodium (NaBH4) et l’hydrure de magnésium (MgH2) ont été sélectionnés au vu de leur capacité gravimétrique élevée en hydrogène. La réaction d'hydrolyse de NaBH4 a été étudiée dans un calorimètre en phase liquide couplée à un compteur à gaz, afin de suivre en même temps, la cinétique de production d’hydrogène et l’évolution de la chaleur de réaction. Nous avons préparé des catalyseurs à base de cobalt supporté sur différents supports (hydrotalcites, KF/Al2O3, hétéropolyanions) ayant des propriétés acido-basiques différentes. Les supports et les catalyseurs à base de cobalt ont été caractérisés par DRX, MEB+EDX, ICP et BET. Co/hétéropolyanions a montré une cinétique très élevée pour la production d'hydrogène accompagnée d'une conversion totale dans la réaction d'hydrolyse. L’absorption et la désorption de l’hydrogène ont été étudiées sur l’hydrure de magnésium. Afin d’améliorer la cinétique de sorption de MgH2, nous avons préparé des mélanges MgH2-MT (MT = métal de transition Co, Ni, Fe, Cr, Mn), MgH2-MTmélangé (MT = métal de transition Co, Ni, Fe,), MgH2-MTnano (MT = métal de transition Conano, Ninano, Fenano, Cunano, Znnano) et MgH2-nLiBH4-MTnano (MT = métal de transition Conano, Ninano, Fenano) par broyage à billes de haute énergie. Leurs propriétés physico-chimiques ont été étudiées par DRX et MEB+EDX. La température de désorption de l’hydrogène et la quantité d’hydrogène dégagée ont été étudiées par TPD. La cinétique d’absorption de l’hydrogène et la réversibilité du stockage de l’hydrogène ont été étudiées par isotherme PCT pour le système MgH2-MTnano. MgH2-10-Ninano présente la meilleure propriété de stockage réversible de l’hydrogène, MgH2-10-Conano et MgH2- 10-Fenano sont aussi de bons candidats potentiels / The use of fossil fuels (non-renewable) is the main raison of increasing the green house in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy carrier. The storage of the hydrogen in the solid phase in the form of hydrides is one of the clean future solutions for storage and transport of energy. Among potential materials, sodium borohydride (NaBH4) and magnesium hydride (MgH2) were selected regarding their high hydrogen gravimetric capacity. The hydrolysis reaction of NaBH4 was studied in a liquid phase calorimetry coupled to a gas-meter, in order to monitor simultaneously the kinetics of the hydrogen production and the evolution of the reaction heat. We prepared cobalt supported catalysts using various supports (hydrotalcites, KF/Al2O3, heteropolyanions) with different acid-base properties. The supports and the catalysts were characterized by XRD, SEM+EDX, ICP and BET. Co/heteropolyanions showed a very high kinetics for the production of hydrogen accompanied by a total conversion in the hydrolysis reaction. The absorption and desorption of hydrogen were studied using magnesium hydride. In order to improve the sorption kinetics of MgH2, we have prepared the MgH2-MT (MT= transition metal Co, Ni, Fe, Cr, Mn), MgH2-MTmixture (MT= transition metal Co, Ni, Fe), MgH2-MTnano (MT = transition metal Conano, Ninano, Fenano, Cunano, Znnano) and MgH2-nLiBH4-MTnano (MT = transition metal Conano, Ninano, Fenano) mixtures by high energy ball milling. Their physicochemical properties were studied by XRD and SEM+EDX. The temperature of hydrogen desorption and the amount of hydrogen generated were investigated by TPD. The kinetics of hydrogen absorption and the reversibility of hydrogen storage were investigated with PCT isotherm for the system of MgH2-MTnano. The sample MgH2-10-Ninano presents the best property for reversible hydrogen storage; MgH2- 10-Conano and MgH2-10-Fenano are also good potential candidates
|
272 |
Couplage entre le stockage et distribution de froid par coulis d'hydrates / Coupling between storage and cold distribution by hydrate slurriesClain, Pascal 06 February 2014 (has links)
L'utilisation des coulis d'hydrates comme Fluides Frigoporteurs Diphasiques (FFD) permet de réduire l'impact environnemental des systèmes frigorifiques car ces fluides possèdent une densité énergétique élevée. Leur application pour le stockage d'énergie thermique serait une réponse à une problématique industrielle de distribution de froid (climatisation, procédés de refroidissement). Ce projet propose d'étudier le couplage entre un dispositif de stockage et un système de distribution par coulis d'hydrates. Un réacteur bi-étagé a été conçu pour simuler le procédé. L'étude des conditions d'équilibres d'hydrates simples et mixtes dans un milieu poreux montrent la possibilité de faire varier la température d'équilibre sans dégradation de l'enthalpie de changement de phase. La cinétique de formation/dissociation des hydrates a été étudiée selon des théories de cristallisation et un modèle empirique a été obtenu. L'étude rhéologique des coulis d'hydrates simples et mixtes a mis en évidence le comportement rhéofluidifiant des coulis avec une forte tendance à l'agglomération pour le coulis d'hydrates mixtes. L'analyse de la distribution de tailles de particules a montré que le coulis a une répartition bimodale des cristaux. La caractérisation du réacteur a pu montrer l'impact de paramètres opératoires sur le temps d'induction. Un outil numérique 2D, intégrant les différents résultats empiriques obtenus, a été développé pour simuler le profil de température dans le réacteur et a été validé en première approche. / The use of hydrate slurries as two-phase secondary refrigerants (FFD) reduces the environmental impact of refrigeration systems because these fluids have a high energy density. They can be used for cold storage will be a solution at an industrial problem of cold distribution at various temperature levels (air-conditioning, cooling process or preservation temperature). In this work, we study the coupling between a storage device and a cold distribution system by hydrate slurries. For achieve this objective, a two-stage reactor has been built for simulate the process. Equilibrium conditions studies for single and mixed hydrate showed an equilibrium temperature shift in porous media without deterioration of latent heat fusion. Hydrates formation/dissociation kinetics have been studied according to crystallization classical theories and an empirical model was obtained. Rheological studies of hydrate slurries emphasized a shear-thinning behavior for both, but a high propensity for agglomeration for mixed hydrate slurry. Particle size analysis showed the slurry has bimodal crystals distribution. Experimental set-up characterization showed process parameters effect in induction time. A 2D numerical tool integrating various empirical relations was developed for modelling temperature profile in the reactor and was validated in a first approach.
|
273 |
Mise au point de nouveaux matériaux à changement de phase pour optimiser les transferts énergétiques / Development of new phase change materials to optimize energy transferSari-Bey, Sana 26 June 2014 (has links)
Les recherches dans le domaine des matériaux innovants possédant une meilleure efficacité énergétique présentent un enjeu environnemental majeur. L'un des moyens d'économiser l'énergie est le stockage. L'utilisation des matériaux à changement de phase est une solution permettant d'absorber, de stocker et de restituer de grandes quantités d'énergie. Ce travail porte sur l'étude expérimentale des propriétés thermophysiques et des changements de phase de matériaux composites à matrice polymère contenant un matériau à changement de phase microencapsulé et sur l'optimisation de ces propriétés. Des composites contenants différentes fractions massiques de microcapsules de paraffine ont d'abord été caractérisés. Afin d'améliorer le transfert thermique des microcapsules de paraffine métallisées avec de l'argent ont ensuite été utilisées. Une nouvelle série d'échantillons a été réalisée. Dans les composites la matrice polymère choisie est le polycaprolactone (PCL), ce polymère a une température de fusion particulièrement faible (53°C), qui permet de le mélanger aux microcapsules sans les détériorer. Les mélanges polymère/microcapsules ont été réalisés à l'aide d'un mélangeur interne, ils ont ensuite été pressés pour obtenir des plaques de composites. L'homogénéité des échantillons a été vérifiée en faisant des observations au microscope électronique à balayage et des mesures de densité. Le matériau à changement de phase utilisé est un mélange de paraffines qui a une température de changement de phase de 26°C, microencapsulé dans du PMMA hautement réticulé, et commercialisé par la société BASF® sous la dénomination commerciale de Micronal® DS 5001 X. Le PCL a une température de fusion inférieure à la température de ramollissement du PMMA. Un des objectifs de cette étude était d'obtenir un matériau qui reste solide même quand la paraffine fond. La microencapsulation a permis cela en évitant que la paraffine ne diffuse hors de l'échantillon lors de cycles successifs, elle permet également d'éviter les phénomènes de convection quand la paraffine est liquide. D'autre part, un autre objectif était de voir si la métallisation des particules permettait d'améliorer les propriétés thermiques en augmentant significativement la conductivité et la diffusivité thermique. La DSC a été utilisée pour connaître les températures et les enthalpies de changements de phase ainsi que les Cp des matériaux entre -20 et 40 °C. Une technique expérimentale développée au laboratoire (DICO) permet de mesurer simultanément la conductivité thermique (λ) et la diffusivité thermique (a) à température ambiante. Une évolution récente de ce dispositif permet maintenant de faire des mesures en rampe en température entre -15°C et 180°C. Les mesures de l'évolution de la conductivité et de la diffusivité thermique en fonction de la température ont donc été réalisées en chauffe et en refroidissement. Les changements de phase observés en DSC se retrouvent sur l'évolution de la conductivité et de la diffusivité thermiques tracées en fonction de la température. On voit également l'impact de l'état solide ou liquide de la paraffine contenue dans les microcapsules sur ces propriétés. Enfin l'évolution de la capacité calorifique volumique a pu être calculée à partir des résultats obtenus avec la DICO (Cp=λ/a) et comparée à l'évolution de la capacité calorifique massique mesurée en DSC. Globalement le transfert thermique a été amélioré pour les composites contenant des Micronal® argentés mais leur capacité de stockage est inférieure aux composites ne contenant que des Micronal® / Research in the field of innovative materials with improved energy efficiency have a major environmental issue. One way to save energy is storage. The use of phase change materials (PCM) is a solution for absorbing, storing and releasing large amounts of energy. This study focuses on the experimental study of the thermophysical properties and phase changes of polymer matrix composite materials containing microencapsulated PCM and the optimization of their thermophysical properties. Composite containing different mass fractions of paraffin microcapsules were first characterized. To improve heat transfer, paraffin microcapsules metallized with silver were then used. A new set of samples was elaborated. In the composite the selected polymer matrix is polycaprolactone (PCL), this polymer has a particularly low melting point (53°C), which allows to mix the microcapsules without damaging them. The polymer/microcapsules mixtures were prepared using a blender, they were then pressed to obtain plates of composites. The homogeneity of the samples was verified by scanning electron microscopy observations and density measurements. The phase change material used is a mixture of paraffins having a phase change temperature of 26°C, in microencapsulated highly crosslinked PMMA, and marketed by BASF under the trade name of Micronal®DS 5001 X. PCL has a melting temperature lower than the softening temperature of PMMA. One objective of this study was to obtain a material that remains solid even when the paraffin melts. Microencapsulation has avoided that the paraffin in the sample diffuses out during successive cycles, it also avoids convection when paraffin is liquid. On the other hand, another goal was to see if metallization of the particles allowed to improve the thermal properties by significantly increasing the thermal conductivity and diffusivity. DSC was used to determine the temperatures and enthalpies of the phase changes and the materials Cp between -20 and 40 ° C. An experimental technique, developed in the laboratory (DICO), can simultaneously measure the thermal conductivity (λ) and thermal diffusivity (a) at room temperature. A recent development of this system now allows to make measurements in ramp between -15°C and 180°C. The measures of the change in thermal conductivity and diffusivity as a function of temperature have been carried out by heating and cooling. Phase changes observed in DSC are found on the evolution of thermal conductivity and thermal diffusivity plotted as a function temperature. It also shows the impact on these properties of solid or liquid state of the paraffin contained in the microcapsules. Finally the evolution of the volumetric heat capacity was calculated from the results obtained with DICO (Cp=λ/a) and compared with the evolution of the specific heat capacity measured by DSC. Globally, heat transfer was improved for composites containing silver but their storage capacity is lower than for the composites containing only Micronal®
|
274 |
Utilisation des matériaux à changement de phase pour une gestion thermique optimale des modules de refroidissement moteur / Use of phase change materials for an optimal thermal management of engine cooling modulesLissner, Michael 02 March 2015 (has links)
L'intégration d'un accumulateur de chaleur dans les systèmes de refroidissement d'un véhicule permet d'optimiser la gestion thermique du groupe motopropulseur et ainsi de réduire la consommation et les émissions polluantes du véhicule. L'intérêt d'un tel accumulateur réside dans sa capacité à stocker / déstocker de l'énergie dans des matériaux à changement de phase (PCM) avec des puissances échangées en adéquation avec les besoins de l'automobile. La problématique scientifique concerne l'intensification, dans un volume restreint, des transferts thermiques dans le matériau de stockage. Le recours à des échangeurs compacts et l'optimisation de la géométrie des ailettes du côté du PCM permettent d'une part de maximiser la puissance échangée grâce à l'augmentation de la surface d'échange avec le PCM et d'autre part d'optimiser la capacité énergétique en améliorant le taux de remplissage en PCM. Le problème est abordé ici de deux façons : théorique, par le développement d'un modèle numérique d'optimisation, puis expérimentale, par la mise au point d'un banc d'essai et de prototypes. Le modèle numérique, validé à partir d'essais, a servi à optimiser la conception de l'accumulateur de chaleur. Enfin, l'intégration de ce composant dans un module de refroidissement pour améliorer la montée en température du groupe motopropulseur a montré des gains significatifs sur le temps de fonctionnement à froid du moteur, réduisant ainsi les émissions polluantes. / Integration of heat accumulator within engine cooling systems allows to optimize powertrain thermal management and to reduce vehicles consumption and pollutant emissions. Interest of such accumulators lies in their capacity to store and release energy within phase change materials (PCM) with powers in accordance with the automotive needs. Scientific problem concerns heat transfer enhancement, for a limited volume, in a phase change material. The use of compact heat exchangers filled with PCM and the optimization of fin design allow to maximize heat transfer thanks to extended heat transfer area with PCM. On the other hand, energy storage capacity is optimized by increasing PCM volume ratio. The problem is approached by two ways: theoretically, by the development of a numerical model of optimization, and experimentally, by the development of a test bench and several prototypes. The numerical model of heat accumulator, validated with test results, was used to run a parametric study to optimize the conception of the heat accumulator, in particular the fin design. Finally, integration of this new component within the cooling system in order to improve the warm-up of the powertrain has shown significant gains on the functioning time of engine during cold start, leading to reduced pollutant emissions.
|
275 |
Thermodynamics and operational properties of nanoporous heterogeneous lyophobic systems for mechanical and thermal energy storage/dissipation / Thermodynamique et propriétés opérationnelles de systèmes nanoporeux hétérogènes lyophobes pour le stockage / la dissipation d'énergie mécanique et thermiqueGrosu, Yaroslav G. 02 June 2015 (has links)
La thèse est consacrée à l’étude théorique et expérimentale des propriétés thermodynamiques et d'usage de Systèmes Hétérogènes de Lyophobes nanoporeux (SHL) et leurs dépendances en fonction de la température afin de déterminer les conditions optimales et accroître l'efficacité des dispositifs énergétiques à base de SHL. La thèse présente les résultats obtenus dans trois directions principales de recherche: 1. Analyse thermodynamique; 2. Caractéristiques des SHL dans une large plage de température; 3. Stabilité de SHL dans différentes conditions opérationnelles. La gamme maximale de température étudiée est à 2 - 150 °C et 0.1 - 120 MPa pour la pression. En particulier, les résultats comprennent une équation d'état pour décrire des SHL réels qui prend en compte la distribution de taille des pores; les caractéristiques énergétiques de quatre (deux mésoporeux et deux microporeux) SHLs mesurées dans une large plage de température; certains nouveaux régimes de fonctionnement de SHLs ont été étudiés dans des conditions isobares contrôlées; enfin le concept d'utilisation de SHL comme système avec dilatation thermique négative prononcée est proposé. / The thesis is devoted to the theoretical and experimental investigations of thermodynamic and operational properties of nanoporous Heterogeneous Lyophobic Systems (HLS) and their temperature dependences in order to determine optimal conditions and increase efficiency of HLS-based energetical devices. The thesis reflects results obtained in three main directions of research: 1. Thermodynamic analysis; 2. Characteristics of HLS in a wide temperature range; 3. Stability of HLS under different operational conditions. Maximum temperature range investigated is to 2 - 150 ° C. Pressure range is 0.1 - 120 MPa. Particularly, results include proposed equation of state for real HLS, which takes into account pore size distribution function; the energetic characteristics of four (two mesoporous and two microporous) HLSs collected in a wide temperature range; some new operation regimes of HLSs were investigated under controlled isobaric conditions; proposed concept of usage of HLS as a system with pronounced negative thermal expansion.
|
276 |
CO2 perturbation in aquifers : reaction kinetics and metals behavior / Perturbation de CO2 dans les aquifères : cinétique des réactions et comportement des métauxRillard, Jean 01 March 2013 (has links)
Ce travail de thèse a porté sur l'étude des perturbations hydrogéochimiques potentiellement induites par le CO2 dans un aquifère salin profond. Dans un premier temps, cet aspect a été étudié à partir de sources hydrothermales naturellement riches en CO2. Une étude de la composition chimique des eaux en fonction de l'augmentation de leur teneur en CO2 a montré une baisse de pH et un enrichissement systématique en cations majeurs et en alcalinité en fonction de la teneur en CO2. Les réactions en jeu ont été étudiées par une approche cinétique afin d'estimer la réactivité des minéraux en fonction de la perturbation en CO2, par le calcul des variations de surfaces réactives. Les résultats obtenus ont montré que la surface réactive des minéraux pouvait varier de 2 à 4 ordres de grandeur en fonction de la perturbation en CO2. Dans un second temps, une expérience d'injection d'eau saturée en CO2 a été effectuée. Une analyse de la variation de la composition chimique des eaux de l'aquifère, avant et après injection, a permis d'étudier l'impact d'une perturbation par le CO2 sur la composition de l'eau. Une attention particulière a été portée sur le comportement des métaux dissous. Les résultats ont montré une baisse du pH (de 7.3 à 5.7), accompagnée d'un enrichissement en alcalinité, cation majeurs et métaux dissous (Fe, Zn, Mn et As). Les calculs d'indice de saturation ont montré qu'une dissolution des oxydes métalliques type ferrihydrite était corrélée à l'enrichissement en métaux dissous. Une approche de cinétique chimique sur la base des résultats expérimentaux a été proposée. Cela a montré que la dissolution des oxydes métalliques obéissait à des cinétiques d'ordre complexe. Ces résultats montrent que l'effet de la perturbation par le Co2 dans les conditions choisies, engendre un enrichissement en éléments dissous, avec un effet plus significatif sur les métaux. Ces phénomènes devront être regardés de près dans l'éventualité du développement de la technologie de stockage géologique du CO2, an aquifère salin profond / The aim of this thesis was to investigate hydrogeochemical perturbation induced by CO2 in natural aquifers. In a first step, we used chemical data from natural CO2-rich hydrothermal water. We studied variation of fluid chemical composition as a function of CO2 content in order to evaluate reactivity of minerals composing the initial reservoir. Fluid chemical analyses showed decrease in pH, and systematic enrichment in alkalinity and major cations correlated to increase in CO2 content. Chemical reaction was studied by kinetic approach to estimate variation of mineral reactive surface area as function of CO2 perturbation. Results showed that mineral reactive surface area could varied by two to four orders of magnitude as a function of CO2 perturbation. In a second step a field experiment of injection of water saturated with CO2 in aquifer has been carried out. Analysis of groundwater composition before and after injection allowed to study the impact of CO2 perturbation on water-rock interaction processes. A particular focus was made on dissolved metals behavior. Results showed a decrease in pH (from 7.3 to 5.7), involved with enrichment in alkalinity by a factor two, and by approximately one order of magnitude for dissolved metals (Fe, Mn, Zn) and by a factor two for As. Saturation index showed that dissolution of metals oxide such as ferrihydrite was correlated to iron release. These results showed that, in our field experimental conditions, CO2 perturbation induced an enrichment in dissolved elements with more significant effect on dissolved metals. These results highlight the importance of proper physic-chemical characterization of fluid and reservoir rock and in-situ kinetic of reaction in the eventual option of Co2 geological storage
|
277 |
Analyse, conception et expérimentation de procédés de stockage thermique résidentiel de longue durée par réaction thermochimique à pression atmosphérique / Seasonal storage of solar energy by thermochemical reactions at atmospheric pressure for household applicationsMarias, Foivos Epameinondas 29 January 2015 (has links)
Les travaux présentés dans ce manuscrit de doctorat s'inscrivent dans la thématique du stockage inter-saisonnier de l'énergie solaire thermique pour l'habitat et le tertiaire (eau chaude sanitaire et chauffage). Le stockage thermochimique en air humide est une des solutions les plus prometteuses, en particulier avec un réacteur à lit fixe. Le bromure de strontium et l'alun de potassium ont été sélectionnés comme réactifs pour leurs caractéristiques énergétiques lors de réactions d'hydratation et de déshydratation. L'étude est constituée d'avancées théoriques, de nombreuses expérimentations et d'un modèle numérique détaillé. Une étude thermodynamique a démontré l'existence d'une droite de charge qui relie les conditions d'entrée et de sortie de l'air humide au passage du réactif. Les équations régissant les réactions chimiques, les transferts massiques et thermiques et la conservation de la quantité de mouvement ont été établies et un modèle numérique monodimensionnel couplant ces phénomènes a été développé. Des essais sur différents échantillons des deux sels et pour divers conditions opératoires ont été effectués dans le but de comprendre les phénomènes physico-chimiques ainsi que pour valider l'étude théorique et le modèle numérique. / This PhD thesis focuses on seasonal solar thermal energy storage for household applications such as production of heat and domestic hot water. Thermochemical storage was chosen for that purpose. The specific solid/gas reactions with water vapor, also called hydration/dehydration reactions, were used with a multi-scale global approach. The level of the reactor was identified as the critical level of that multi-scale approach. As a consequence, the integrated fixed-bed reactor technology in a moist air open loop system was adopted. A theoretical, experimental and numerical methodology was used for the study where strontium bromide and potassium alum salts were chosen as reactive materials. The corresponding reactions are: + 5 (H2O) ↔ (with Δhr=67.4 kJ/molwater and Δsr=175 J/K.molwater) + 9 (H2O) ↔ < KAl(SO4)2.12H2O > (with Δhr=44.2 kJ/molwater and Δsr=109.8 J/K.molwater) The first salt exhibits very good thermochemical properties. On the other hand, the main advantages of potassium alum are its low cost and the fact that it presents no sanitary risk. More than 30 cycles with 3 different samples of potassium alum and more than 25 cycles with 4 samples of strontium bromide under various stationary and dynamic operating conditions were carried out in order to understand the phenomena. The main experimental results were the following ones: • A very good stability and reproducibility of physical and chemical phenomena was observed for both materials. • A thermal reaction front was also observed. • A thermal hysteresis for both salts was found. • Based on that last observation a theoretical equation named charge-discharge line was developed. Experimental results with both salts validate the charge-discharge line theory. • A correlation between reaction kinetics, temperature rise due to the reaction, power of the reaction and the operating conditions was observed. The criterion for that correlation is the affinity of the reaction. A proportional correlation between affinity and reaction kinetics, temperature rise and power of the reaction was observed. • Spontaneous hydration and over-hydration reactions do not produce any particular difficulties or problems. • Pressure drop through the reactor and evolution of salts volume were also measured. Experimental energy density was measured in the range of 350 kWh/m3 for strontium bromide and 240 kWh/m3 for the potassium alum. • In general, strontium bromide is a very good candidate material for seasonal storage, while potassium alum cannot provide satisfying temperature rise and power. The equations governing those phenomena were also established and used to develop a 1D numerical model with partial differential equations coupling chemical phenomena, mass and thermal transfer phenomena and momentum conservation. Verification, validation and confirmation of this model under a very large range of operating conditions were carried out based on the experimental results of strontium bromide. A total of 19 different test cases were studied in order to validate the numerical model. The effect of humidity, temperature, quantity of reactive material and air flow were studied both for stationary and dynamic conditions. The numerical model was able to provide very satisfying results.
|
278 |
Simulations et optimisation de systèmes de stockage et de purification d'hydrogène en utilisant des adsorbants et des hydrures métalliques = Simulation and optimization of hydrogen storage and purification using adsorbents and metal hydridesTong, Liang January 2020 (has links) (PDF)
No description available.
|
279 |
Le couplage nitrate/proton au sein de l’échangeur AtClCa est essentiel à la physiologie de la plante en réponse aux fluctuations environnementales / Nitrate/proton coupling in AtClCa exchanger is required for plant physiology in response to environment fluctuationsHodin, Julie 20 June 2018 (has links)
Chez les plantes, le nitrate est un élément essentiel mais sa disponibilité dans le sol est fluctuante. Il est donc stocké dans la vacuole grâce à un échangeur nitrate/proton appelé AtClCa. La famille de protéines ClCs comporte à la fois des échangeurs mais aussi des canaux suggérés comme issus de l’évolution des échangeurs par une conversion mécanistique. Chez Arabidopsis thaliana, seuls des ClCs échangeurs assurent la gestion du nitrate. Deux glutamates très conservés, E203 et E270 dans AtClCa, sont essentiels pour le transport des protons chez les ClCs échangeurs. La mutation du résidu E203 en une alanine, un acide aminé non protonable (E203A) a permis de produire artificiellement une telle conversion mécanistique. Afin de mieux comprendre l’importance physiologique du mécanisme d’échange, une analyse a été conduite sur des plantes exprimant la forme mutée d’AtClCa pour ce glutamate. Chez ces plantes, le stockage vacuolaire est fortement réduit au profit d’une importante assimilation accroissant la teneur en protéines. En dépit de cela, elles présentent un défaut de production de biomasse résultant en grande partie d’une perturbation de l’homéostasie hydrique. Elles sont également plus sensibles aux stress hydrique et probablement azoté. La conservation d’un échangeur est donc requise pour croitre en dépit des fluctuations environnementales. En parallèle, la mutation E270A a été introduite en plante afin d’étudier son importance sur la physiologie d’Arabidopsis. Une analyse préliminaire de la biomasse et des contenus en nitrate et eau de plantes exprimant la forme mutée de ce glutamate est donc présentée dans la seconde partie de cette thèse. / Nitrate is a major element for plant but its availability is very fluctuant in soils. Then, it is stored in vacuoles thanks to a nitrate/proton exchanger named AtClCa. In ClCs, exchangers but also channels were identified, the latest were suggested to be evolved from exchanger in which a mechanistic switch happened. In Arabidopsis thaliana, only exchangers are involved in nitrate management. Two conserved glutamate, E203 and E270 in AtClCa, are essential for protons transport in ClCs exchangers. The mutation of E203 into an alanine, a non-protonable amino acid (E203A) artificially produces such a mechanistic switch. To better understand the physiological importance of this exchange mechanism, a study was conducted in plants expressing the mutated form of AtClCa for this glutamate. In those plants, the vacuolar storage is highly restricted whereas the assimilation is favoured and the protein content increased. Despite that, the biomass production is decreased mostly because of a hydric homeostasis disruption. Those plants are also more sensitive to hydric and probably nitrogenous stress. The exchanger conservation is then required for plant growth whatever the environmental fluctuations. In parallel, the mutation E270A was introduced in planta to study its physiological importance. A preliminary analysis of plant biomass and nitrate and water contents was then performed in plants expressing the E270A mutated form of AtClCa and the results are presented in the second part of the manuscript.
|
280 |
Modélisation numérique du comportement hydromécanique des milieux poreux fracturés : analyse des conditions de propagation des fractures / Numerical modelling of the hydromechanical behaviour of fractured porous media : analysis of fracture propagation conditionsNguyen, Van-Linh 08 December 2015 (has links)
L'effet de serre lié à l'émission de CO2 a conduit à des projets de stockage de ce gaz dans des formations réservoirs. Ces formations peuvent être traversées de failles et l'examen de la sûreté du stockage nécessite alors l'étude du risque de réactivation et de propagation de ces failles. Cette étude passe par des investigations approfondies portant sur des conditions de propagation des fractures sous sollicitations hydromécaniques. Cette thèse a pour objectif l'étude théorique et numérique de ces conditions ainsi que la simulation numérique de la propagation. La modélisation numérique des processus thermo-hydro-mécaniques dans les milieux poreux fracturés par la méthode des éléments finis (MEF) permet de simuler des phénomènes complexes et non linéaires. Les difficultés liées à l'intégration des équations d'échanges de fluide entre la fracture et la matrice environnante avec la MEF ont été résolues dans des travaux récents et nos simulations numériques ont pu être basées sur cette méthode. Dans un premier temps, nous avons modélisé l'écoulement transitoire dans et au voisinage d'une fracture soumise à une injection de fluide et nous avons étudié le facteur d'intensité des contraintes (FIC) à l'extrémité de la fracture dans le cadre de la théorie de la poroélasticité linéaire. Si les conditions d'injection sont maintenues constantes et la fracture n'évolue pas, l'écoulement tend vers un état stationnaire. Le FIC évolue au cours de la phase transitoire pour atteindre une valeur limite dans l'état stationnaire. La modélisation de l'écoulement transitoire est très coûteuse en temps de calcul et il est intéressant de trouver un moyen d'exploiter au mieux les résultats d'un calcul en état stationnaire. L'analyse théorique et les résultats des simulations numériques montrent en effet que le FIC calculé à l'état stationnaire peut fournir certaines bornes pour la propagation des fractures sous l'écoulement transitoire. Dans le cadre de la poroélasticité linéaire et de l'écoulement de Poiseuille dans les fractures, des expressions semi-analytiques pour le FIC à l'état d'écoulement stationnaire ont pu être dérivées. Pour des géométries simples, ces formules approximatives se révèlent efficaces pour discuter des conditions de propagation des fractures pour des cas typiques et simples de géométrie de la fracture et des conditions d'injection de fluide. Dans un deuxième temps, un Modèle de Fracture Cohésive (MFC) a été utilisé pour modéliser la propagation de fracture sur la base de l'endommagent. Ce modèle, basé sur un critère de rupture de Mohr–Coulomb modifié, permet de simuler l'endommagement de l'interface à la fois sous sollicitations en mode I et II. Une relation d'équivalence entre les paramètres de ce modèle et du modèle de Mécanique Linéaire de la Rupture (MLR) a été établie sur la base de la longueur de propagation de fracture sous des charges similaires. Cette relation permet l'extension de l'équivalence théorique entre MLR et MFC établie pour les matériaux fragiles et sur la base de critères énergétiques, à des matériaux quasi-fragiles et ductiles. On a d'ailleurs montré que le MFC permet de simuler certains phénomènes spécifiques tels qu'instabilités de propagation en mode I et II et le branchement de la fracture en mode II. Enfin, la prise en compte de la pression de fluide dans la fracture a permis d'obtenir un modèle de MFC couplé avec l'hydraulique qui a été implémenté dans un code numérique aux éléments finis en vue d'étudier la propagation des fractures sous sollicitations hydromécaniques. Des simulations numériques ont été réalisées afin d'étudier le risque de réactivation et de propagation des failles dans le contexte de stockage du CO2 en particulier dans une configuration de formation réservoir du type Bassin de Paris / Global warming effect related to CO2 emission has led to sequestration projects of this gas in reservoir formations. These formations can be crossed by faults and safety issue of storage requires the study of fault reactivation and propagation risk. This study goes through in-depth investigations of fracture propagation conditions under hydromechanical solicitations. This thesis aims at theoretical and numerical studies of these conditions and the numerical simulation of fracture propagation. Numerical modelling of thermo-hydro-mechanical processes in fractured porous media using Finite Element Method (FEM) allows the simulation of complex and nonlinear phenomena. Difficulties in integrating fluid mass exchange between fracture and surrounding matrix in the equations with FEM have been solved in recent works and our numerical simulations have been based on this progress. In a first step, we modelled transient flow subjected to a fluid injection and we studied the Stress Intensity Factor (SIF) at fracture tip in the framework of linear poroelasticity theory. If injection conditions are kept constant and the fracture does not evolve, the flow tends to a steady state. The SIF develops during transient phase to reach a limit value in the steady state. Modelling of transient flow is very time consuming and it is interesting to find a method to exploit the results of a calculation in steady state. Theoretical analysis and results of numerical simulations show that the SIF calculated at steady state can provide some bounds for fracture propagation under transient flow. In the framework of linear poroelasticity and Poiseuille flow in fractures, some semi-analytical expressions of SIF at steady state could be derived. For simple geometries, these approximate formulations are efficient to discuss fracture propagation conditions for typical and simple cases of fracture geometry and fluid injection conditions. In a second step, a Cohesive Zone/Fracture Model (CFM) was used to model fracture propagation on the basis of damage. This model, based on a modified Mohr-Coulomb failure criterion, simulates interface damage under both mode I and II loads. An equivalence relation between parameters of CFM and Linear Elastic Fracture Mechanics model (LEFM) was established on the basis of fracture propagation length under similar loads. This relationship allows the extension of theoretical equivalence between LEFM and CFM established for brittle materials and on the basis of energy criteria, for quasi-brittle and ductile materials. It has also shown that CFM can simulate specific phenomena such as propagation instabilities for mode I and II and fracture kinking under mode II. Finally, taking into account the fluid pressure in the fracture permitted to obtain a CFM coupled with hydraulic processes which has been implemented in a numerical finite element code to study fracture propagation under hydromechanical solicitations. Numerical simulations were performed to study the risk of fault reactivation and propagation in the context of CO2 injection in Paris Basin reservoir formation
|
Page generated in 0.0487 seconds