Spelling suggestions: "subject:"stokes atemsystem"" "subject:"stokes systsystem""
21 |
Homogenization of Optimal Control Problems in a Domain with Oscillating BoundaryRavi Prakash, * January 2013 (has links) (PDF)
Mathematical theory of homogenization of partial differential equations is relatively a new area of research (30-40 years or so) though the physical and engineering applications were well known. It has tremendous applications in various branches of engineering and science like : material science ,porous media, study of vibrations of thin structures, composite materials to name a few. There are at present various methods to study homogenization problems (basically asymptotic analysis) and there is a vast amount of literature in various directions. Homogenization arise in problems with oscillatory coefficients, domain with large number of perforations, domain with rough boundary and so on. The latter one has applications in fluid flow which is categorized as oscillating boundaries.
In fact ,in this thesis, we consider domains with oscillating boundaries. We plan to study to homogenization of certain optimal control problems with oscillating boundaries. This thesis contains 6 chapters including an introductory Chapter 1 and future proposal Chapter 6. Our main contribution contained in chapters 2-5. The oscillatory domain under consideration is a 3-dimensional cuboid (for simplicity) with a large number of pillars of length O(1) attached on one side, but with a small cross sectional area of order ε2 .As ε0, this gives a geometrical domain with oscillating boundary. We also consider 2-dimensional oscillatory domain which is a cross section of the above 3-dimensional domain.
In chapters 2 and 3, we consider the optimal control problem described by the Δ operator with two types of cost functionals, namely L2-cost functional and Dirichlet cost functional. We consider both distributed and boundary controls. The limit analysis was carried by considering the associated optimality system in which the adjoint states are introduced. But the main contribution in all the different cases(L2 and Dirichlet cost functionals, distributed and boundary controls) is the derivation of error estimates what is known as correctors in homogenization literature. Though there is a basic test function, one need to introduce different test functions to obtain correctors. Introducing correctors in homogenization is an important aspect of study which is indeed useful in the analysis, but important in numerical study as well.
The setup is the same in Chapter 4 as well. But here we consider Stokes’ Problem and study asymptotic analysis as well as corrector results. We obtain corrector results for velocity and pressure terms and also for its adjoint velocity and adjoint pressure. In Chapter 5, we consider a time dependent Kirchhoff-Love equation with the same domain with oscillating boundaries with a distributed control. The state equation is a fourth order hyperbolic type equation with associated L2-cost functional. We do not have corrector results in this chapter, but the limit cost functional is different and new. In the earlier chapters the limit cost functional were of the same type.
|
22 |
Sur la contrôlabilité de quelques systèmes de type paraboliques avec un nombre réduit de contrôles et d'une équation de KdV avec dispersion évanescente / On the controllability of some systems of the parabolic kind with a reduced number of controls and of a KdV equation in the vanishing dispersion limitCarreno-Godoy, Nicolas-Antonio 02 October 2014 (has links)
Ce travail est consacré à l'étude de quelques problèmes de contrôlabilité concernant plusieurs modèles issues de la mécanique des fluides. Dans le Chapitre 2, on obtient la contrôlabilité locale à zéro du système de Navier-Stokes avec contrôles distribués ayant une composante nulle. La nouveauté la plus importante est l'absence de conditions géometriques sur le domaine de contrôle. Le Chapitre 3 étend ce résultat pour le système de Boussinesq, où le couplage avec l'équation de la chaleur permet d'avoir jusqu'à deux composantes nulles dans le contrôle agissant sur l'équation du fluide. Le Chapitre 4 traite l'existence de contrôles insensibilisants pour le système de Boussinesq. En particulier, on montre la contrôlabilité à zéro d'un système en cascade issu du problème d'insensibilisation où le contrôle dans l'équation du fluide possède deux composantes nulles. Pour ces problèmes, on suit une approche classique. On établit la contrôlabilité à zéro du système linéalisé autour de zéro par une inégalité de Carleman pour le système adjoint avec des termes source. Puis, on obtient le résultat pour le système non linéaire par un argument d'inversion locale.Dans le Chapitre 5, on étudie quelques aspects de la contrôlabilité à zéro d'une équation de KdV linéaire avec conditions au bord de type Colin-Ghidaglia. On obtient une estimation du coût de la contrôlabilité à zéro qui est optimal par rapport au coefficient de dispersion. Sa preuve repose sur une inégalité de Carleman avec un comportement optimal en temps. Puis, on montre que le coût de la contrôlabilité à zéro explose exponentiellement par rapport au coefficient de dispersion lorsque le temps final est suffisamment petit. / This work is devoted to the study of some controllability problems concerning some models from fluid mechanics. First, in Chapter 2, we obtain the local null controllability of the Navier-Stokes system with distributed controls having one vanishing component. The main novelty is that no geometric condition is imposed on the control domain. In Chapter 3, we extend this result for the Boussinesq system, where the coupling with the temperature equation allows us to have up to two vanishing components in the control acting on the fluid equation. Chapter 4 deals with the existence of insensitizing controls for the Boussinesq system. In particular, we prove the null controllability of the cascade system arising from the reformulation of the insensitizing problem, where the control on the fluid equation has two vanishing components. For these problems, we follow a classical approach. We establish the null controllability of the linearized system around the origin by means of a suitable Carleman inequality for the adjoint system with source terms. Then, we obtain the result for the nonlinear system by a local inversion argument.In Chapter 5, we study some null controllability aspects of a linear KdV equation with Colin-Ghidaglia boundary conditions. First, we obtain an estimation of the cost of null controllability, which is optimal with respect to the dispersion coefficient. This improves previous results on this matter. Its proof relies on a Carleman estimate with an optimal behavior in time. Finally, we prove that the cost of null controllability blows up exponentially with respect to the dispersion coefficient provided that the final time is small enough.
|
23 |
Contrôle et stabilisation pour des équations hyperboliques et dispersives / Control and stablization of some hyperbolic and dispersive equationsSun, Chenmin 04 July 2018 (has links)
Dans cette thèse, nous étudions la contrôlabilité et la stabilisation pour des équation hyperboliques et dispersives. La première partie de cette thèse est consacrée à la stabilisation du système de Stokes hyperbolique. La propagation des singularités pour le système de Stokes semi-classique est établie dans chapitre 1. La preuve repose sur la stratégie de Ivrii et Melrose-Sjöstrand.Cependant, par rapport à l’opérateur de Laplace, la difficulté est causée par la pression qui a un effet non trivial pour les solutions concentrées au bord. Nous utilisons la paramétrix des solutions près d’un point elliptique ou hyperbolique. Ensuite, on traite les solutions concentrées près de l’ensemble «glancing» par une décomposition micro-locale. L’effet de la pression est alors bien contrôlé grâce à la géométrie. Finalement on utilise un argument récurrence pour terminer la preuve. Par conséquent, nous prouvons la stabilisation du système de Stokes hyperbolique dans le chapitre 2 sous la condition de contrôle géométrique sur le support de l’amortissement.La deuxième partie est consacrée à la contrôlabilité et la stabilisation de l’équation de Kadomtsev-Petviashvili (KP en bref). Dans le chapitre 3, en utilisant l’analyse semi-classique, nous avons prouvé la contrôlabilité verticale pour des données dans L^2 (T). De plus, un résultat négatif concernant la contrôlabilité horizontale est aussi obtenu. Dans le chapitre 4, nous considérons la contrôlabilité de l’équation de KP-I linéaire. C’est un modèle intéressant dans lequel la vitesse de groupe peut être dégénéré. Plus général, on a obtenu le plus petit ordre requis pour assurer l’observabilité des équations de KP-I fractionnaire linéaire. Finalement dans le chapitre 5, nous avons montré la contrôlabilité et la stabilisation des ’equations de KP-II et 5KP-II avec grandes données initiales dans l’espace de Sobolev, si la donnée initiale satisfait certaines hypothèses de compacité partielles. Ceci généralise la contrôlabilité des solutions de KP-II avec données petites dans le chapitre 3. / In this thesis, we deal with the control and stabilization for certain hyperbolic and dispersive partial differential equations. The first part of this work is devoted to the stabilization of hyperbolic Stokes equation. The propagation of singularity for semi-classical Stokes system is established in Chapter 1. This will be done by adpating the strategy of Ivrii and Melrose-Sjöstrand. However,compared to the Laplace operator, the difficulty is caused by the pressure term which has non-trivial impact to solutions concentrated near the boundary. We apply parametrix construction to resolve the issue in elliptic and hyperbolic regions. We next adapte a fine micro-local decomposition for solutions concentrated near the glancing set. The impact of pressure to the solution is then well controled by geometric considerations. As a consequence of the main theorem in Chapter 1, we prove the stabilization of hyperbolic Stokes equation under geometric control condition in Chapter 2. The second part is devoted to the controllability of Kadomtsev–Petviashvili(KP in short) equations. In Chapter 3, the controllability in L 2 (T) from vertical strip is proved using semi-classical analysis. Additionally, a negative result for the controllability in L^2 (T) from horizontal strip is also showed. In Chapter 4, we prove the exact controllability of linear KP-I equation if the control input is added on a vertical domain. It is an interesting model in which the group velocity may degenerate. More generally, we have obtained the least dispersion needed to insure observability for fractional linear KP I equation. Finally in Chapter 5, we prove exact controllability and stabilization of KP-II equation and fifth order KP-II equation for any size of initial data in Sobolev spaces with additional partial compactness conditions. This extends the exact controllability for small data obtained in Chapter 3.compactness condition. This extends the exact controllability for small data obtained in Chapter 3.
|
Page generated in 0.0491 seconds