Spelling suggestions: "subject:"top codon"" "subject:"top kodon""
1 |
Stop Codon Polymorphism in Two Saccharomyces SpeciesLevine, Joshua January 2012 (has links)
The origin of new coding sequence is a major puzzle in biology. The evolutionary pressures on new sequences are largely unknown, but structural constraints are thought to play a role. Previously, 3' untranslated region (UTR) conversion to open reading frame (ORF) was observed in Saccharomyces. We sought to identify genes that were polymorphic for stop codon position in S. cerevisiae and S. paradoxus. Using strain sequence data from the Saccharomyces Genome Resequencing Project, we found 1336 genes that had evidence of stop codon polymorphism. Of those, we found 62 genes that had evidence of addition to ancestral sequence that represented the conversion of ancestral 3' UTR to derived ORF. Two of these genes, YGL058W and YNL034W-A, are prime candidates for structural studies as they are short proteins with long additions and known structures. In future studies, they will be used to infer any structural constraints on newly evolving proteins.
|
2 |
Úloha elF3 a Rps3 v pročítání stop kodonu / The role of elF3 a Rps3 in stop codon readthroughPoncová, Kristýna January 2020 (has links)
Translation represents a highly regulated, interconnected process of protein synthesis in the cell. It could be divided into 4 phases: initiation, elongation, termination, and ribosomal recycling. Our laboratory is involved in in-depth studies of a complex eukaryotic initiation factor 3 protein (eIF3). We are interested not only in revealing its molecular roles in the translational cycle in general but also in specific mechanisms that allow translational regulation according to specific cellular needs. In the budding yeast, the eIF3 is composed of five essential subunits (a/Tif32, b/Prt1, c/Nip1, g/Tif35 and i/Tif34). In mammals, the protein is even more complex, comprising of 12 subunits (a-i, k-m). eIF3 is a key player not only in translation initiation but also in ribosomal recycling and, surprisingly, in translation termination and stop codon readthrough as well. The latter process harbors important clinical potential, as approximately 1/3 of genetically inherited diseases is caused by the presence of a premature termination codon in the protein-coding region. Therefore, understanding the molecular mechanism underlying this phenomenon provides important tools for the targeted and less toxic drug development approaches needed for patient therapy. In this Ph.D. Thesis, I uncovered the role of...
|
3 |
Cysteinová tRNA reguluje proteosyntézu v lidských buněčných liniích / Cysteine tRNA regulates protein synthesis in human cell linesKučerová, Michaela January 2021 (has links)
A significant number of known human genetic diseases is associated with nonsense mutations leading to the introduction of a premature termination codon into the coding sequence. A termination codon can be read through by its near-cognate tRNA (tRNA with two anticodon nucleotides base-pairing with a stop codon); potentially generating C-terminally extended protein variants. In yeast, UGA stop codon was described to be read through by tRNA-Trp and tRNA-Cys. Similar was observed for tRNA-Trp in human HEK293T cell line. The aim of this thesis was to investigate if human tRNA-Cys can act as a near-cognate tRNA in human HEK293T cell line. There are two isoacceptors which constitute the tRNA-Cys family, with ACA and GCA anticodon. There are 1 and 23 isodecoders to the ACA and GCA anticodons, respectively. Here, altogether as many as nine tRNA-Cys isodecoders (distinct in their sequence and with varying levels of expression) were tested for their ability to increase UGA readthrough in HEK293T using p2luci and pSGDluc dual-luciferase reporter vectors. In both p2luci and pSGDluc, we observed that at least one tRNA-Cys isodecoder, tRNA-Cys-GCA-4-1, is capable of significantly elevating the UGA readthrough levels when overexpressed in HEK293T. This indicates that similarly to yeast, tRNA-Cys is capable of...
|
4 |
Lactate dehydrogenase is C-terminally extended by stop codon read-through which targets this isoform into the peroxisomesGeorge, Rosemol 03 August 2016 (has links)
No description available.
|
5 |
Fidélité de la terminaison de la traduction chez les eucaryotes / Translation termination accuracy in eukaryotesBlanchet, Sandra 18 September 2014 (has links)
La terminaison de la traduction se produit lorsqu’un codon stop entre au site A du ribosome où il est reconnu par le facteur de terminaison eRF1 accompagné du facteur eRF3. Cette étape de la traduction est encore mal comprise chez les eucaryotes. Au cours de ma thèse je me suis intéressée à l’étude de la fidélité de la terminaison de la traduction afin de mieux comprendre et caractériser les mécanismes moléculaires mis en jeu lors du décodage du codon stop.L’un de mes projets consistait à mieux caractériser une région du domaine N-terminal d’eRF1, la cavité P1, identifiée comme étant impliquée dans l’efficacité de terminaison. Grâce à une quantification de l’efficacité de translecture de mutants de la cavité P1, j’ai pu mettre en évidence le rôle de résidus clés comme les serines 33 et 70, impliquées dans le décodage spécifique du codon UGA probablement via une interaction directe entre les deux résidus, ou encore l’arginine 65 et la lysine 109, essentielles pour une terminaison efficace sur les trois codons stop. L’analyse par RMN de ces mutants a également permis de montrer que ces résidus étaient importants pour la conformation correcte de la cavité et potentiellement impliqués dans une interaction directe avec l’ARNm. La combinaison des données génétiques et structurales nous a permis de proposer un modèle d’interaction entre l’ARNm et le facteur de terminaison eRF1 dans lequel le codon stop serait reconnu en partie par l’intermédiaire de la cavité P1. Dans la cellule, la terminaison est toujours en compétition avec la translecture, qui correspond à l’incorporation d’un ARNt proche-cognat au niveau du codon stop. Afin d’identifier les acides aminés incorporés par translecture au niveau du codon stop, j’ai mis au point un système basé sur l’expression et la purification de protéines issues de la translecture qui sont ensuite analysées par spectrométrie de masse. J’ai pu mettre en évidence que la glutamine, la tyrosine et la lysine s’incorporent au niveau des codons UAA et UAG, alors que le tryptophane, la cystéine et l’arginine sont retrouvés au niveau du codon UGA. J’ai également pu montrer que le contexte en 5’ n’influençait pas l’incorporation des acides aminés au codon stop mais qu’en revanche, la présence de la paromomycine avait un impact sur la sélection des ARNt suppresseurs naturels. Ce projet permet d’apporter de nouvelles informations sur les règles de décodage grâce à l’analyse des appariements entre codons stop et anticodons des ARNt naturels suppresseurs. Il permet également d’envisager des perspectives thérapeutiques dans le cadre des maladies liées à la présence d’un codon stop prématuré et pour lesquelles le traitement repose sur l’utilisation de la translecture afin de ré-exprimer des protéines entières. / Translation termination occurs when a stop codon enters the A site of the ribosome where it is recognized by eRF1 (eukaryotic release factor 1), associated with eRF3. This step of translation is not yet understood in eukaryotes. During my PhD, I was interested in studying translation termination accuracy to better understand and characterize the molecular mechanisms involved in stop codon decoding.One of my project consisted in characterizing a region in eRF1 N-terminal domain, pocket P1, identified to be involved in termination efficiency. Through a quantification of readthrough efficiency of pocket P1 mutants, I have highlighted the role of key residues, like serine 33 and serine 70, implicated in specific recognition of UGA stop codon, probably through a direct interaction between the two amino acids, and also arginine 65 and lysine 109, essential for efficient termination on the three stop codons. The analysis of the mutants by NMR revealed that these residues are also important for proper conformation of the cavity and potentially involved in a direct interaction with mRNA. The combination of our genetic data and structural analysis allowed us to propose a model of interaction between termination factor eRF1 and the mRNA, in which the stop codon would be recognized partially through pocket P1.In cells, termination always competes with readthrough which corresponds to the incorporation of near-cognate tRNAs at the stop codon. To identify the amino acids inserted by readthrough at the stop codon, I have developed a reporter system based on the expression and purification of readthrough proteins that are analyzed by mass spectrometry. I found that glutamine, tyrosine and lysine are inserted at UAA and UAG stop codons, whereas tryptophan, cysteine and arginine are inserted at UGA stop codon. I also showed that the 5’ nucleotide context does not influence the incorporation of amino acids at the stop codons by readthrough, but that, in contrast, the presence of paromomycin impacted the selection of natural suppressors tRNAs incorporated by readthrough. This project gives us new insights into the decoding rules by analyzing the base pairings between stop codon and near-cognates anticodons. It also allows us to consider therapeutic prospects for the treatment of premature stop codon diseases which uses readthrough as a tool to re-express full-length proteins from mRNAs that are interrupted by the presence of a premature stop codon.
|
6 |
Suppression traductionnelle des codons stop chez les mammifères / Translational suppression of stop codons in mammalsBugaud, Olivier 21 September 2016 (has links)
Entre 10% et 30% des maladies humaines sont liées à l'apparition d'une mutation non-sens (PTC). La synthèse protéique est alors arrêté prématurément. Cet arrêt peut être inhibé par des molécules inductrices de translecture qui permettent l’incorporation d’un ARNt suppresseur naturel au niveau du PTC (translecture). Le ribosome peut alors franchir le PTC et restaurer l’expression de la protéine.Au cours de ma thèse, je me suis intéressé à la suppression des codons stop en caractérisant de nouvelles molécules inductrices de translecture et en analysant les mécanismes de la fidélité de la traduction.J’ai tout d’abord mis au point un système de criblage innovant avec lequel j’ai testé plus de 17 000 molécules et identifié la molécule TLN468. J’ai pu mettre en évidence que cette molécule est capable d’induire la réexpression d’une protéine p53 active.J'ai aussi caractérisé de nouveaux composés dérivés d’aminoglycosides. J’ai pu montré que le NB124 est capable d’induire l’apoptose de cellules tumorales via la réexpression de la protéine p53 tout ayant une toxicité bien plus faible que la gentamicine.En parallèle, j’ai développé une approche en molécule unique permettant d’étudier les erreurs programmées du ribosome (recodage). J’ai ainsi pu analyser la cinétique d’élongation des ribosomes eucaryotes et montré que l’initiation de la traduction sur un site d’entrée interne (IRES) ralentit le ribosome lors des premiers cycles d’élongation. / Nonsense mutations, also known as premature termination codons (PTCs) are responsible for 10% to 30% of all human genetic diseases. Nonsense translation suppression can be induced by readthrough inducers. The presence of such PTC leads to premature translation termination. These stop therapeutic strategies have emerged which attempt to use molecules that facilitate tRNA incorporation at the PTC (readthrough). The, translation continue in the same reading frame until the next stop codon. I first developed an innovative screening system I used to test more than 17,000 molecules and have identified one hit, TLN468 molecule. I have shown that this molecule is able to induce re-expression of an active p53 protein.I also characterized new compounds derived from aminoglycosides. I have shown that the NB124 induces apoptosis of tumor cells by re-expressing p53 protein while having a much lower toxicity than gentamicin.I developed a single molecule approach for studying the ribosome programmed errors (recoding). I was able to analyze the kinetics of elongation eukaryotic ribosomes and showed that the initiation of translation at an internal entry site (IRES) slows the ribosome during the first elongation cycle.
|
7 |
Spektroskopische Charakterisierung der grün-absorbierenden Kanalrhodopsin-Chimäre ReaChRKrause, Benjamin Sören 06 September 2018 (has links)
Kanalrhodopsine (ChRs) sind lichtgesteuerte Ionenkanäle, welche nach Absorption eines Photons durch den Retinal-Cofaktor einen passiven Ionentransport über die Zellmembran katalysieren. Im Zuge von optogenetischen Anwendungen wird diese Reaktion für die Beeinflussung der Ionenhomöostase von verschiedenen Zelltypen und Geweben ausgenutzt. Zu Beginn dieser Arbeit wurden lichtinduzierte Strukturänderungen und Protontransferschritte in einem breiten Zeitbereich (Nanosekunden bis Minuten) in dem grün-absorbierenden ChR ReaChR mithilfe von stationärer und transienter UV-vis- und Fourier-Transform-Infrarot-Spektroskopie (FTIR) untersucht. Auf Basis der experimentellen Daten wurde ein komplexes Photozyklus-Modell konzipiert.
Anschließend wurde die IR-aktive, nichtkanonische Aminosäure p-Azido-L-phenylalanin (azF) mittels Stopp-Codon-Suppression ortsspezifisch an mehreren Positionen innerhalb der vermuteten ionenleitenden Kanalpore in ReaChR inkorporiert und mit FTIR untersucht. azF ist sensitiv gegenüber Polaritätsänderungen und absorbiert in einem hochfrequenten Bereich (~2100 cm-1). Aufgrund der großen spektralen Separation zu endogenen Proteinschwingungen (< 1800 cm-1) können globale Konformations- und lokale Hydratisierungsänderungen simultan detektiert werden. Die erhobenen Daten leisten einen wichtigen Beitrag zum Verständnis der Bildung einer temporären Wasserpore in ChRs und demonstrieren zum ersten Mal den erfolgreichen in-vivo-Einbau einer artifiziellen Aminosäure in mikrobielle Rhodopsine und dessen schwingungsspektroskopische Analyse. Die Methode bietet aufgrund ihrer hohen Ortsauflösung ein großes Potential für die Studie von Mikroumgebungen innerhalb komplexer Proteinensemble. / Channelrhodopsins (ChRs) are light-gated ion channels. Upon absorption of a photon, the retinal chromophore isomerizes and drives conformational changes within the protein, which lead to a passive ion transport across the cell membrane. This capability is used for optogenetic applications to manipulate ionic homeostasis of different cell types and entire organisms. Within the work, light-induced structural changes and proton transfer steps were studied in the green-absorbing ChR ReaChR in great detail by steady-state and transient UV-vis and Fourier transform infrared spectroscopy (FTIR). The data were merged into a complex photocycle model.
Next, the IR-active, unnatural amino acid p-azido-L-phenylalanine (azF) was site-specifically introduced at several sites of the putative ion pore of ReaChR by stop codon suppression. azF is sensitive to polarity changes and absorbs in a clear spectral window lacking endogenous protein vibrations. Thus, FTIR measurements of labeled mutants report for global conformational changes (< 1800 cm-1) and local hydration changes (~2100 cm-1) simultaneously. The presented findings reveal crucial insights regarding formation of a transient water pore in ChRs and demonstrate the first report of the successful in-vivo incorporation of an artificial amino acid into a microbial rhodopsin and its subsequent spectroscopic investigation. Additionally, the so far unprecedented spatial resolution renders this methodology superior over conventional FTIR methods to study microenvironments within complex protein ensembles.
|
Page generated in 0.059 seconds