• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 9
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 21
  • 19
  • 19
  • 17
  • 15
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation of Large Solar Hot Water system in storage tank

Shue, Nai-Shen 06 September 2012 (has links)
This research is aimed to study the storage tank design parameters effects on the efficiency of the large solar hot water system. Detailed CFD simulation for the storage tank coupled with TRNSYS program simulation for the entire solar hot water system will be performed to study the system performance under various thermal stratification baffles design for the storage tank. The study is made for three representative cities of Taiwan by input their typical-meteorological-year data (TMY data). The results indicate the performance of a large solar hot water system can be significantly improved with proper designed thermal stratification baffles in the storage tank.
2

A Thermal Energy Storage Tank Model for Solar Heating

Pate, Robert Arthur 01 May 1977 (has links)
The results of a combined theoretical and experimental study of the kinetics of a hot-liquid energy-storage tank are presented. A physical model is developed which accurately describes the thermal stratification behavior in a storage tank. The governing differential equations are developed for the physical model. A numerical solution to the system of equations is presented. Some existing models were examined and the predicted results of each are discussed. The concepts developed can be used to predict the thermal stratification behavior in a storage tank under most conceivable operating conditions. These conditions include flow configurations at the top and the bottom of the tank which both have inversionary tendencies. Inversionary behavior could conceivably occur in both the top and the bottom regions of the tank during a combined storage and usage mode which might occur at non-peak storage hours. Although the work was done primarily for the utilization of solar energy, the results are not limited to such application. The results are more significant as a contribution to applied fluid dynamics.
3

The Safe Removal of Frozen Air from the Annulus of a Liquid Hydrogen Storage Tank

Krenn, Angela 01 January 2015 (has links)
Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boiloff is often the first indicator of an air leak. Severe damage can then result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. Two potential methods for air removal are evaluated here. The first method discussed is the connection of a vacuum pump to the annulus which provides pumping in parallel with drainage of LH2. The goal is to keep the annular pressure below the triple point so that the air continues to sublimate, thus eliminating the threat that liquefaction poses. The second method discussed is the application of heat to the bottom of the outer tank during tank drain. Though liquefaction in the annular space will occur, the goal of the heater design is to keep the outer shell above the embrittlement temperature, so that cracking will not occur. In order to evaluate these methods, it is first necessary to characterize some the physical properties and changes that take place in the system. A thermal model of the storage tank was created in SINDA/FLUINT (C&R Technologies, 2014) to identify locations where air can freeze. This model shows the volume that is capable of freezing air under varying conditions. It is also necessary to characterize the changes in thermal conductivity of perlite which has nitrogen frozen into its interstitial spaces. The details and results of an experiment designed for that purpose is outlined. All data, including operational data from existing LH2 tanks, is compiled and a physics-based evaluation of the two proposed air removal techniques is performed. Due to small pumping capacities at low pressure and the large quantity of air inside the annulus, the pumping option is not deemed feasible. It would take many years to remove a significant amount of air by pumping while maintaining the annular pressure below the necessary triple point. Application of heating devices is a feasible option. For a specific case, it is shown that approximately 105 kilowatts of power would be required to vaporize the air in the annulus and keep the temperature of the outer tank wall above the freezing point of water. Several engineering solutions to accomplish this are also discussed. There are many unknowns and complexities in addressing the problem of safely removing frozen air from the annulus of an LH2 storage sphere. The work that follows utilized: research, modeling, experimentation, analysis, and data from existing tanks to arrive at possible solutions to the problem. Heating solutions may be implemented immediately and could result in significant savings to the user.
4

REPORT ON AN INTERNSHIP WITH HANDEX OF ILLINOIS, INC MARCH 2001 THROUGH AUGUST 2001

Molholm, James M. 11 December 2002 (has links)
No description available.
5

Boilover in liquid hydrocarbon tank fires

Buang, Azizul January 2014 (has links)
Boilover is a violent ejection of certain liquid hydrocarbons due to prolonged burning during a storage tank fire. It happens due to vaporization of the water sub-layer that commonly resides at the base of a storage tank, resulting in the ejection of hot fuel from the tank, enormous fire enlargement, formation of a fireball and an extensive ground fire. Boilover is a very dangerous accidental phenomenon, which can lead to serious injuries especially to emergency responders. The boilover can occur several hours after the fuel in a storage tank caught fire. The delayed boilover occurrence is an unknown strong parameter when managing the emergency response operations. Modelling and simulation of the boilover phenomenon will allow the prediction of the important characteristics features of such an event and enable corresponding safety measures to be prepared. Of particular importance is the time from ignition to the occurrence of boilover. In order to establish a tool for the prediction of the boilover events, it is essential to understand what happens within the fuel during a fire. Such understanding is important in order to recognize and determine the mechanisms for the hot zone formation and growth which are essentials, especially for predicting the onset time of boilover. Accordingly, boilover experiments and tests were planned and carried out at field scale by the Large Atmospheric Storage Tank FIRE (LASTFIRE) project with the intentions to evaluate the nature and consequences of a boilover, and to establish a common mechanism that would explain the boilover occurrence. Undertaking field scale experiments, however, is difficult to carry out so often due to high costs and high safety concerns. In order to obtain more detailed measurements and visual records of the behaviour of the liquids in the pool, a novel laboratory scale rig has been designed, built and commissioned at Loughborough University. The vessels used in the field scale tests and the laboratory scale rig were instrumented with a network of thermocouples, in order to monitor the distribution in temperature throughout the liquid and its variation with time. The temperature distribution variation as a function of time enabled the recognition of the phases of the evolution of the hot zone and hence the mechanism of boilover. The rig has allowed well defined and repeatable experiments to be performed and hence enable to study and assess boilover in a reproducible manner. In addition, visualisation of the fuel behaviour during the experiments could be obtained to better understand the formation and growth of hot zone, the boiling of water layer and hence the boilover occurrence. A number of small and larger scale experiments had been completed to obtain a wide spectrum of results, evaluating the effect of tank diameters, fuel depth, and water depth on the rate and extent of the boilover. The analysis of the results had elucidated further the processes of the hot zone formation and its growth, and hence mechanisms involved in the boilover occurrence. The important observation was that there are three stages observed in the mechanism of boilover incidence. At the start of the fire there is a stage when the hot zone is formed. This is followed by a period when the bottom of the hot zone moves downwards at a pseudo constant rate in which the distillation process (vaporisation of the fuel s lighter ends) is taking place. The final stage involved the heating up of the lowest fuel layer consisting of components with very high boiling points and occurrence of boilover. Based on the observations of the mechanisms involved in the hot zone formation and its growth, predictive calculations were developed which focus on the provision of an estimate on the time to boilover upon the establishment of a full surface fire and an estimate of the amount of fuel remaining in the tank prior to the occurrence of the boilover. A predictive tool was developed in order to provide predictions on the important parameters associated with a boilover event i.e. the time to boilover, the amount of fuel remaining in the tank prior to boilover and hence the quantity of fuel that would be ejected during boilover and the consequences of a boilover i.e. fire enlargement, fireball effects and the ground area affected by the expulsion of oil during a boilover event. The predictive tool developed is capable of providing good estimates of onset time to boilover and predicts consequences of the boilover. The tool predicting the time to boilover of the LASTFIRE field scale test and the laboratory scales tests was shown to produce predictions that correlated with the observed time to boilover. Apart from the time to boilover, the predictive calculation is also able to provide an estimate of fuel amount remained in the tank at the instance of boilover occurrence. Consequently, the tool is capable of predicting the quantity of burning fuel being ejected and hence the area affected by the extensive ground fire surrounding the tank. The predictive results are conservatives but yet show good agreement with observed time to boilover in real boilover incidents. Certain considerations in the development of safe and effective fire fighting strategies in handling fire scenario with a potential of boilover occurrence, can be assessed using the predictive tool developed.
6

Lagring av industriell överskottsvärme hos Bharat Forge Kilsta i Karlskoga : Simulering av värmeförluster och regleringsundersökning / Heat storage of industrial excess heat at Bharat Forge Kilsta in Karlskoga : Heat loss simulation and investigation of regulation

Johansson, Alexandra January 2016 (has links)
I takt med en ökande befolkning ökar användningen av energi. Samtidigt som energianvändandet ökar, avvecklas kärnkraftverken och därmed ökar kolkraftverkens användning vilket leder till utsläpp av främst koldioxid. Många industrier släpper ut mängder av överskottsvärme i naturen utan att den återanvänds. Ett sätt att ta tillvara på överskottsvärme, som annars går till spillo, är att lagra den. Om värme kan lagras och användas vid en annan tidpunkt kan den ersätta andra energikällor och onödiga utsläpp kan förhindras. Det finns idag tre olika metoder att lagra värmeenergi. Dessa är sensibelt värme, latent värme och kemisk värme. Inom varje metod finns olika system som beskrivs vidare i denna rapport. Bharat Forge Kilsta Kilsta är ett smidesföretag i Karlskoga. Deras smidesugn avger stora mängder värme som dels går till lokaluppvärmning men en del av värmen går till spillo. Skulle överskottsvärmen, som nu går till spillo, kunna lagras på ett effektivt sätt skulle både miljömässiga och kostnadsmässiga besparingar kunna göras. Syftet med rapporten är att redogöra och jämföra olika värmelagringsmetoder i en litteraturstudie för att se vilken typ som passar för industriell överskottsvärme i fallet med Bharat Forge Kilsta. Målet är att översiktligt redovisa olika lagringsmetoder samt olika system inom dessa med avseende på lagringskapacitet och kostnad. Utifrån simulering och reglering av bergrumslager och ackumulatortankar kan en passande metod, med avseende på energidistribution och energieffektivitet samt kostnad, för det specifika fallet väljas. Den mest utvecklade och kommersiellt använda metoden är sensibelt värme, den latenta och kemiska värmelagringen är fortfarande i forskning- och utvecklingsstadiet då de är mer kostsamma. Val av lagringsmetod avgörs utifrån lagringskapacitet, lagringstemperatur, kostnad, geografisk placering samt lagringslängd. Sensibelt värme passar bäst till långtidslagring, vid lägre temperaturer och där lagringskapaciteten måste vara stor till ett lågt pris. Latent och kemisk värme passar bäst för högre temperaturer då värmeförlusterna är små och energidensiteten är hög, kostnaden för dessa är dock hög och de tillämpas enbart i liten skala än så länge. Ur litteraturstudien kunde vissa system uteslutas, de system som skulle passa en industri som Bharat Forge Kilsta var bergrum och ackumulatortank. Resultatet visade att bergrummen har störst värmeförluster jämfört med den totala energin, däremot är lagringskapaciteten större. För att garanterat tillgodose värmebehovet vid extremdagar är det mest lämpligt att använda bergrummen. Kostnadsmässigt är de befintliga tankarna bäst lämpade, däremot klarar de enbart tillgodose värmebehovet i sex timmar vid extrembelastning. Om de befintliga tankarna används som system och 200 m3 tanken tilläggsisoleras kan omkring 100 000 kr per år sparas, räknat med att förlusterna skulle ersätta inköpt fjärrvärme och att skillnaden i värmeförluster enbart sker vinterhalvåret. Återbetalningstiden var kortast för de befintliga takarna, 1,4 år medan en ny ackumulatortank hade längst återbetalningstid, 3,2 år. / When the population increases also the energy use will rise. At the same time the nuclear power plants is decommissioned and the use of coal-fired power plants increases, which leads to large amount of mainly carbon dioxide emissions. Many industries get a lot of excess heat that is released in the nature instead of being reused. One way to reuse excess heat could be to store the heat in a suitable storage for later use. If the excess heat can be stored and be used at a different time it can replace other energy sources and decrease the emissions. Today there is three ways to storage heat, they are sensible heat, latent heat, and chemical heat. In each method there are different systems, these will be described further in this report. Bharat Fore is a large forging company in Karlskoga, Sweden. From their furnace a lot of heat is emitted, some of the heat is used to heat the buildings, but still a lot of excess heat goes to waste.  The aim of this report is to compare different heat storage systems and see which one is best suited to industrial excess heat. The goal is to investigate if there is any heat storage method that is effective and cost-saving that fits a larger industry. The purpose of this work is to do a literature study to account and compare different heat storage methods to find the best suitable system for the case with Bharat Forge Kilsta. The goal is to present different storage methods and the different system for each method with respect of cost and storage capacity. From simulation and regulation find the best fitting method for the real case with respect of cost, efficient and storage capacity. The most developed and commercially used method is the sensible heat. Latent heat and chemicals are very costly and still in the research and development stage. Geographic location, using area and operating temperature is parameters that need to be considered when choosing heat storage system. Sensible heat is best suited for long-term storage, at lower temperatures and when the storage capacity needs to be large to a small cost. Latent and chemical heat is best suited for higher temperatures because the heat losses are small and the energy density is high and they are only applied in small scale for now. The result of the literature study showed that storage tanks and cavern storage is most fitting for the case with Bharat Forge Kilsta. The cavern has much larger heat loss compared to the total energy, however the storage capacity is much larger. To guarantee that the heat requirements when there are extreme days it is most appropriate to use the cavern as heat storage. From a coast view it is most fitting to use the already existing tanks, however they could only cater the heat requirement for six hours of heat peak when the production is not running. If the existing tanks is used as heat storage, and the 200 m3 tank will be additional insulated, if the heat loss, in the winter, is replaced with purchased district heating as much as 100 000 SEK per year could be spared. The payback time is shortest for the existing tanks, 1.4 years and almost 3.2 years for the new storage tank.
7

Impact of Tank Material on Water Quality in Household Water Storage Systems in Cochabamba, Bolivia

Schafer, Cynthia Anne 19 October 2010 (has links)
The importance of water as a mechanism for the spread of disease is well recognized. This study conducted household surveys and measured several physical, chemical, and microbial water quality indicators in 37 elevated storage tanks constructed of different materials (polyethylene, fiberglass, cement) located in a peri-urban community near Cochabamba, Bolivia. Results show that although there is no significant difference in physical and chemical water quality between polyethylene, fiberglass and cement water storage tanks there is a difference in microbial contamination as measured by E. Coli counts (p = 0.082). Evidence points toward elevated water temperatures that increase along the distribution system (from 10.6°C leaving the treatment plant) to within the black polyethylene storage tank (temperatures as high as 33.7°C) as the most significant factor in promoting bacterial growth. Results indicate that cleaning frequency may also contribute to microbial water quality (p = 0.102).
8

An Investigation of Methods to Enhance Stratification in Solar Domestic Hot Water Tanks.

Alsagheer, Fozi 10 March 2011 (has links)
Solar domestic hot water (SDHW) systems collect energy with a solar collector, transfer the energy to the water through a heat exchanger, and store it in a storage tank. The water in the tank should be thermally stratified to the highest possible degree to maximize system efficiency because a stratified tank has higher availability than a mixed tank temperature. The objective of this research is to develop a manifold that will enhance thermal stratification in the SDHW tank. In this work a new immersion shell-and-coil heat exchanger with a perforated manifold that extends from the heat exchanger to the top of the tank was used to enhance the thermal stratification. The purpose of the perforated manifold is to deliver the water heated by the heat exchanger to the tank at the level where the temperature of the water in the tank matches the temperature of the heated water, thereby enhancing stratification. The effectiveness of the perforated manifold was determined experimentally. An experimental set-up was designed and constructed. The experimental results were analyzed for each manifold design then compared to determine the most effective manifold. The experimental work included testing and comparing different manifold designs. To simulate an actual system, experiments were conducted on three initial tank conditions, namely cold, hot, and mixed tank conditions. The thermal performance of the system in terms of tank availability and entropy, maximum tank temperature, and thermal stratification were studied. A method to determine and design a perforated manifold that works with the standard Canadian SDHW system was established and evaluated experimentally. An availability analysis approach was developed to evaluate the thermal performance of manifolds, which have been operated at different times of the year. Theoretically, gradually increasing the diameter of the holes in the manifold from the bottom into the top should reduce the unwanted flow of cold water from the bottom of the tank to the manifold and enhance the thermal performance of the manifold. However, the experimental did not confirm this.
9

Návrh uskladňovací nádrže / Design of storage tank

Sedmidubský, Petr January 2016 (has links)
The master thesis deals with design of storage tank for nitric acid. The first chapter introduces the problems of design, manufacture and operation of the storage tanks. The next section describes design calculation of storage tank according to standard EN 14015. Control of design calculation is performed by analysis FEM in program ANSYS Workbench 16.2. Thesis also includes basic drawing of storage tank.
10

Numerical and experimental study of the fluid flow in porous medium in charging process of stratified thermal storage tank / Numerisk och experimentell studie av fluidströmning i porösa medier under laddning av stratifierad värmelagringstank

Berg, Anders January 2013 (has links)
In order to increase the efficiency of an adsorption heat pump system, a stratified thermal heat storage can be used to enable regeneration of heat between the different phases of the process. It’s crucial to avoid mixing and to keep layers intact inside the storage tank. As mixing generally occurs during charging and discharging, the aim of this project is minimizing these effects by introducing porous media into the region of the inlet ports. The impact of porous media on laminar and turbulent flow inside stratified thermal storage tanks is qualitatively and quantitatively investigated. Two thermal storage tanks are examined in which polyurethane foam is used as porous medium. Numerical results are compared with experimental results in order to study the effects of the porous medium and validating numerical models. For the quantitative investigation, equations describing flow in porous media are obtained and implemented into computational fluid dynamics (CFD) models. Simulations of storage tanks are performed by means of 2D-axisymmetric domain models. Tanks are investigated qualitatively using two methods; background oriented schlieren (BOS) and ink colored inlet water, in order to visualize flow and mixing inside tanks. Thermo elements are also used to measure temperatures at given locations. Results from experimental- and numerical cases show how porous media influence stratification in a positive way. Flow visualizing experiments (using ink and BOS) showed decrease in thermocline thickness when using polyurethane foam. This could also be seen for the numerical cases. Experimental- and numerical investigations of the ability of porous media to damp turbulence intensity and kinetic energy, showed a positive effect. Further improvements have to be done, adjusting numerical models to experimental results. Comparison between the numerical- and experimental results showed differences both in flow fields and temperature distributions. Results indicate however, that porous media could play an increasing role in the development of stratified heat storages. / Stratifierade värmelagringstankar kan användas för att öka effektiviteten hos adsorptionsvärmepumpsprocesser genom att möjliggöra regeneration av värme mellan faserna. För att dessa effektivt ska kunna användas är det viktigt att temperaturskikt hålls intakta inuti lagringstankarna och att omröring undviks. Då omröring oftast uppstår vid laddning och tömning av lagringstankarna är målet för det här projektet att minska denna effekt genom att använda porösa medier vid deras inlopp. Porösa mediers inverkan på flöden och temperaturskikt inuti värmelagringstankar undersöks både kvalitativt och kvantitativt i det här projektet. Två tankar undersöks där polyuretanskum används som poröst medium. Numeriska resultat jämförs med experimentella för att undersöka effekterna av de porösa medierna, samt för att validera de numeriska modeller som används. Ekvationer som beskriver flödet genom porösa medier implementeras i CFD (computational fluid dynamics) modeller och lagringstankarna modelleras som 2D-axelsymmetriska domäner. Bakgrundsorienterad schlierenteknik (BOS) och färgning av inloppsvatten används för den kvalitativa undersökningen och termoelement används för att mäta temperaturer vid olika positioner. Numeriska och experimentella resultat visar hur porösa medier har en positiv inverkan på temperaturskiktningen. Resultat från experiment då BOS teknik och färgning av vatten används visar en minskning av det termoklina skiktets tjocklek med en ökad polyuretanskumtjocklek. Detta kunde också ses för de numeriska fallen. Numeriska och experimentella resultat visar även att porösa medier har en positiv inverkan på dämpningen av turbulens och kinetisk energi. Fortsatt arbete krävs för att anpassa numeriska modeller till experimentella data. Jämförelser mellan numeriska och experimentella resultat uppvisar skillnader både hos flödesfält samt hos temperaturfördelningar inuti tankarna. Resultaten visar dock att porösa medier skulle kunna spela en betydande roll för utvecklingen av stratifierade värmelagringstankar.

Page generated in 0.0375 seconds