Spelling suggestions: "subject:"stormwater "" "subject:"stormwaters ""
421 |
Mainstreaming Green Infrastructure: The Nexus of Infrastructure and Education Using the Green Space Based Learning (GSBL) Approach for Bioretention Plant SelectionLocicero, Ryan Charles Robert 31 March 2015 (has links)
The Green Space Based Learning (GSBL) approach builds on a long-term partnership between a Research I university, surrounding community, and local school district, transforming underutilized community green space into an interactive educational tool to addresses national infrastructure and educational challenges. The GSBL approach is an educational platform for engaging K-12 and the local community in engineering design and construction of sustainable Green Infrastructure (GI) projects. GSBL was piloted as a part of a federally funded Research Experience for Teachers (RET) program in which teachers participated in two intensive 6-week summer research experiences and two consecutive academic year components. The summer experience focuses on the development of Science Technology Engineering and Mathematic (STEM) lessons and activities that meet Common Core and Next Generation Science Standards and the dissemination of the RET research experience. Approximately 400 K-12 students and teachers participated in both formal and informal educational activities that led to GSBL approach outputs throughout the academic year. These outputs included 4 Campus GI Challenge's for identifying areas of implementation and student driven GI design, the publication of 7 curricular products, the design and installation of 70 personal rain gardens and 8 bioretention cells (a type of GI), one of which was designed as a field scale research site within the Hillsborough County Public Schools (HCPS) district.
The eight bioretention cells, seven of which are on three public school campuses and one located at a local community leader's house were designed and implemented as a result of university research, K-12 outreach, and community engagement. These sites were selected based on one or more hotspot factors (e.g. localized areas of flooding, access to site, presence of learning space, willingness to pay, property ownership, visibility of location) and designed to restore the hydrology and water quality to pre-development conditions. The bioretention cells were designed to capture a storm-event ranging from 1.27 cm to 2.54 cm and cost between $550 and $1,650 to construct depending on the design scope, scale, and installation methods. The installed bioretention systems route stormwater runoff to a ponding area sized approximately 2-5% of the total catchment area, are designed to capture between 31% and 67% of annual runoff (March 2010 - March 2015), and attenuate between 97,500 and 226,100 mg N annually.
The educational sites were used to provide insight into hydraulic performance, maintenance requirements, and nutrient management impacts associated with bioretention design. Three of the bioretention cells (BR 1, BR 2, and BR 3) were used as a field research site for collecting bioretention plant performance data on 12 Florida native plant species, Coreopsis leavenworthii, Flaveria linearis, Salvia coccinea, Solidago fistulosa, Canna flaccida, Tradescantia ohiensis, Tripsacum dactyloides, Hymenocallis latifolia, Iris virginica, Sisyrinchium angustifolium, Spartina patens, and Equisetum hyemale.
Mean baseline accumulated nitrogen concentration for tested species was 18.24 ± 5.76 mg N/g biomass. This compared to a harvested mean concentration rate of 12.28 ± 2.23 mg N/g biomass, a reduction of uptake capacity of nearly 33% after two growing seasons. This study found a similarity in mean total nitrogen concentration between baseline and harvested plant species for Flaveria linearis, Sisyrinchium angustifolium, Solidago fistulosa, Canna flaccida, Salvia coccinea, Spartina patens, and Coreopsis leavenworthii and a significant difference in means for Equisetum hyemale, Iris virginica, Salvia coccinea, and Tradescantia ohiensis. These harvested data were used to calculate mean total nitrogen concentration per square meter with Sisyrinchium angustifolium, Equisetum hyemale, Spartina patens, Solidago fistulosa, Salvia coccinea, Coreopsis leavenworthii, Iris virginica ranging from 286 mg N/m2 to 4,539 mg N/m2, and Canna flaccida, Flaveria linearis, Tradescantia ohiensis ranging from 12,428 mg N/m2 to 15,409 mg N/m2. Seven of the twelve species (Flaveria linearis, Equisetum hyemale, Iris virginica, Tripsacum dactyloides, Coreopsis leavenworthii, Salvia coccinea, Tradescantia ohiensis) displayed highly desirable results, ranking (>0.20x̅) when evaluated across 10 quantitative attributes and assessed for their applicability for the subtropical Tampa Bay area.
This research developed a plant selection utility index (PSI) that allows for individual plant scoring based on qualitative and quantitative plant selection criteria. The qualitative PSI was used to evaluate 26 native and regionally friendly plant species commonly found within the subtropical Tampa Bay climate to provide an example and act as a template for selecting plant species. The qualitative PSI scores categorized the identified plant species as highly desirable (n=4, PSI ≥ 80), Flaveria linearis, Tripsacum dactyloides, Salvia coccinea, and Chamaecrista fasciculata; moderately desirable (n=15, 80 > PSI ≥65), Solidago fistulosa, Hymenocallis latifolia, Canna flaccida, Tradescantia ohiensis, Arachis glabrata, Mimosa strigillosa, Callicarpa Americana, Penta lanceolata, Monarda punctate, Muhlenbergia capillaris, Helianthus debilis, Glandularia tampensis, Silphium asteriscus, Stachytarpheta jamaicensis, and Coreopsis lanceolata; and least desirable (n=7, PSI < 65) Spartina patens, Equisetum hyemale, Sisyrinchium angustifolium, Iris virginica, Coreopsis leavenworthii, Myrcianthus fragrans, Zamia puila. The quantitative PSI was used to evaluate attributes of 11 of the 26 species within a 32.5 m2 field-scale bioretention system (BR 1, BR 2, and BR 3) ter two-growing seasons. The tested species scored as highly desirable (n=2, PSI ≥ 70) for Salvia coccinea, Tradescantia ohiensis; moderately desirable (n=5, 70 > PSI ≥ 50) for Equisetum hyemale, Sisyrinchium angustifolium, Solidago fistulosa, Iris virginica, Coreopsis leavenworthii, and least desirable (n=4, PSI < 50) for Spartina patens, Flaveria linearis, Canna flaccida, Hymenocallis latifolia. Both qualitative and quantitative scores were combined on a 0-200 scale to provide a list of recommended species based, ranking from high to low: Salvia coccinea (PSI=160), Tradescantia ohiensis (PSI = 148), Sisyrinchium angustifolium (PSI =127), Flaveria linearis (PSI = 125), Solidago fistulosa (PSI = 124), Iris virginica (PSI =121), Coreopsis leavenworthii (PSI = 117), Equisetum hyemale (PSI = 114), Canna flaccida (PSI = 104), Spartina patens (PSI = 103), Hymenocallis latifolia (PSI =90).
|
422 |
Watershed-based design of stormwater treatment facilities : model development and applicationsLarm, Thomas January 2000 (has links)
No description available.
|
423 |
Greening the Streets: A Comparison of Sustainable Stormwater Management in Portland, Oregon and Los Angeles, CaliforniaSchweitzer, Na'ama 01 May 2013 (has links)
Stormwater runoff is one of the main sources of pollution for urban waterways. Stormwater has traditionally been managed through concrete-based storm drainage systems, but the past twenty years have introduced an alternative in the form of green infrastructure. Green infrastructure for stormwater management involves the use of low impact development (LID), often vegetated facilities to mimic natural hydrologic systems that capture and allow infiltration of rainwater where it falls and from impervious surfaces upstream, before entering the drainage system. Portland, Oregon and Los Angeles, California have adopted green infrastructure into their stormwater management plans. For this project, bioswales, a form of vegetated LID facility, were tested in each city to determine their pollutant retention capabilities. Results from Portland show that bioswales filter out heavy metals effectively, and results from Los Angeles show that bioswales accumulate heavy metals in the soil over the course of the year (also due to filtering out metals from the stormwater). These results raise the question of whether accumulation can reach dangerous levels or saturate the soil with pollutants so that removal efficiency is diminished, indicating a need for further monitoring. However, the success of bioswales up to this point is encouraging and indicates that this method should continue to be employed.
|
424 |
Wet Weather Performance of an Extensive Vegetated Roof in Waterloo, OntarioVander Linden, William Kyle 19 September 2008 (has links)
Vegetated roof technologies are increasingly being adopted as treatment measures to mitigate the effects of urban stormwater. A mass balance approach was used to assess the wet weather performance of a vegetated roof on the top of city hall in Waterloo, Ontario. Vegetated and control roof sections were instrumented to measure precipitation inputs, storage and outflow for 18 storm events from June to October, 2006. Concentrations of suspended solids (SS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu), zinc (Zn), chromium (Cr) and cadmium (Cd) in precipitation and roof (vegetated and control) runoff were measured. A total of 155.6 mm of rain fell during the study period. The vegetated roof retained 64.5 mm (41.5%) of the total rainfall while the control roof retained ~ 5.1 mm (3.3 %). For individual rain events, the vegetated roof retained an average of 3.5 mm (47.6 %) while the control roof retained ~ 0.3 mm (4.7 %). Water retention varied with storm size, season and was influenced by wetting history. The vegetated roof retained 80.6 % of precipitation for light storm events (≤ 3.5 mm) and 34.9 % for large storm events (> 3.5 mm). The control roof retained 7.6 % light storm events and 3.7 % for large storm events. Water quality from the vegetated roof did not show significant improvement as only Zn concentrations in runoff from the vegetated roof were significantly lower than that measured in runoff from the control roof. Concentrations of SS, Cu, Cr and Cd in vegetated roof runoff were relative to concentrations in rainfall and control roof runoff and TP and SRP concentrations were significantly higher than that in rainfall or control roof runoff. Results gained from this study may assist people in planning and stormwater management by providing insight into the monitoring, development and application of new stormwater controls.
|
425 |
Wet Weather Performance of an Extensive Vegetated Roof in Waterloo, OntarioVander Linden, William Kyle 19 September 2008 (has links)
Vegetated roof technologies are increasingly being adopted as treatment measures to mitigate the effects of urban stormwater. A mass balance approach was used to assess the wet weather performance of a vegetated roof on the top of city hall in Waterloo, Ontario. Vegetated and control roof sections were instrumented to measure precipitation inputs, storage and outflow for 18 storm events from June to October, 2006. Concentrations of suspended solids (SS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu), zinc (Zn), chromium (Cr) and cadmium (Cd) in precipitation and roof (vegetated and control) runoff were measured. A total of 155.6 mm of rain fell during the study period. The vegetated roof retained 64.5 mm (41.5%) of the total rainfall while the control roof retained ~ 5.1 mm (3.3 %). For individual rain events, the vegetated roof retained an average of 3.5 mm (47.6 %) while the control roof retained ~ 0.3 mm (4.7 %). Water retention varied with storm size, season and was influenced by wetting history. The vegetated roof retained 80.6 % of precipitation for light storm events (≤ 3.5 mm) and 34.9 % for large storm events (> 3.5 mm). The control roof retained 7.6 % light storm events and 3.7 % for large storm events. Water quality from the vegetated roof did not show significant improvement as only Zn concentrations in runoff from the vegetated roof were significantly lower than that measured in runoff from the control roof. Concentrations of SS, Cu, Cr and Cd in vegetated roof runoff were relative to concentrations in rainfall and control roof runoff and TP and SRP concentrations were significantly higher than that in rainfall or control roof runoff. Results gained from this study may assist people in planning and stormwater management by providing insight into the monitoring, development and application of new stormwater controls.
|
426 |
Watershed-based design of stormwater treatment facilities : model development and applicationsLarm, Thomas January 2000 (has links)
No description available.
|
427 |
Flexible Urban Drainage Systems in New Land-Use AreasEckart, Jochen 01 January 2012 (has links)
Urban drainage systems are influenced by several future drivers that affect the performance as well as the costs of the systems. The uncertainties associated with future drivers and their impact creates difficulties in designing urban drainage systems sustainably. A review of the different future drivers for urban drainage systems illustrates that no sufficient future predictions for the long operational life spans of the systems are possible. This dissertation contends that to deal with future uncertainties, flexibility in urban drainage systems is necessary.
At present, profound insights about defining, measuring, and generating flexible urban drainage systems do not exist. This research systematically approaches these issues. First, a clear definition of flexibility and an approach for the measurement and optimization of flexibility is operationalized. Based on the generic definitions of flexibility used in other disciplines, a definition tailored for urban drainage systems is generated. As such, flexibility in sustainable urban drainage systems is defined as `the ability of urban drainage systems to use their active capacity to act and respond to relevant alterations during operation in a performance-efficient, timely, and cost-effective way'. Next, a method for measuring flexibility is provided based on the developed definition of flexibility including the metrics, 'range of change', 'life-cycle performance' and 'effort of change'. These metrics are integrated into a framework for the measurement of flexibility based on a comparison of performance and effort in different alternative solution with respect to different future states. In addition the metrics are the core components for optimizing flexible design of urban drainage system. The measurement method is successfully applied in two case studies in Tuttle Hill, UK and Hamburg-Wilhelmsburg, Germany. Using the developed definition and method for the measurement of flexibility, this dissertation illustrates that a transfer of the general theoretical background of flexibility to the field of urban drainage is possible.
It is currently unclear how the flexible design of urban drainage systems can be executed. Based on a review, this research identifies nine potential principles of flexible design, described by the indicators of modularity, platform design, flexible elements, cost efficiency, decentralized design, real time control, low degree of specialization, scalability, and a combination of these principles. A case study of Hamburg-Boberg is then presented to analyze which of these principles of flexible design can be verified. For each alternative solution in the sample, the indicators for the different potential principles of flexible design as well as the flexibility provided by the design are calculated. Testing is done to determine if there is a significant correlation between the potential principles of flexible design and the measured flexibility using a chi-square-test and F-test. Two principles are verified with a high degree of confidence, 'platform design' and `flexible elements'. The `platform design' principle provides high flexibility, in which urban drainage system elements with high change costs are designed robustly with huge tolerance margins, whereas elements with low change costs are designed with flexibility options. The 'flexible elements' principle aims to include as many component elements as possible, which provides high individual flexibility in the design of the urban drainage system.
These design principles and associated static indicators enable a quick screening of huge number alternative solutions and provide guidance for the development and optimization of flexible urban drainage system. Within the framework for optimization of flexibility, the design principles can help identify the most promising alternative solutions for the design of urban drainage systems. The optimization framework includes the following steps: identification of the required flexibility, generation of alternative solutions for the design of urban drainage systems, screening of the most promising alternative solutions, detailed measurement of flexibility provided by the alternative solutions; and selection of optimal solution. Hence out of a sample of different design approaches, the solutions with the highest flexibility could be identified.
The successful application of flexible design in three case studies illustrates that the concept provides a suitable strategy for dealing with the challenges associated with future uncertainties. For urban drainage systems, flexible design guarantees high levels of performance in uncertain future states while reducing the effort required to adapt the system to changing future conditions. This study contends that flexibility allows for profound decision making for urban drainage design despite future uncertainties.
|
428 |
Connecting Urban Residents to Their Watershed with Green Stormwater Infrastructure: A case study of Thornton Creek in Seattle, WashingtonBeem, Lisa A 17 May 2014 (has links)
Connecting Urban Residents to Their Watersheds with Green Stormwater Infrastructure: A case study of Thornton Creek in Seattle, Washington.
|
429 |
CONTROL AND PASSIVE TREATMENT OF RUNOFF FROM HORSE MUCK STORAGE STRUCTURES USING RAIN GARDENSOtte, Hillary K 01 January 2012 (has links)
Runoff from livestock operations may contain a variety of pathogens and high levels of nutrients and other harmful contaminants, and is of particular concern in central Kentucky as watersheds are threatened by waste generated from a high concentration of equine activity. Rain gardens are a type of stormwater management tool used to capture and passively treat runoff. This project aimed to incorporate rain gardens into the horse muck storage structures at a thoroughbred facility in the Canr Run watershed in Lexington, Kentucky. Water quality data from soil water within two rain garden muck pads and two control pads, and grab samples from the stream were compared. No significant differences were observed, but trends revealed higher levels of nitrate and phosphate in rain gardens compared to controls, while total organic carbon and E. coli levels were lower in the rain gardens, suggesting that the rain gardens are trapping nutrients while reducing organic matter and killing bacteria. E. coli populations were lower in stream sample locations near rain garden muck pads compared to further downstream near controls. Management recommendations include further improvement of muck storage structures, replacing old muck pads, and changing management and housekeeping habits and attitudes towards environmental responsibility.
|
430 |
Evaluating the Effectiveness of Regulatory Stormwater Monitoring Protocols on Groundwater Quality in Urbanized Karst RegionsNedvidek, Daniel C. 01 August 2014 (has links)
Non-point pollution from stormwater runoff is one of the greatest threats to water quality in the United States today, particularly in urban karst settings. In these settings, the use of karst features and injection wells for stormwater management results in virtually untreated water being directed into the karst aquifer. Currently, no policies exist specifically to provide water quality protections to karst environments. This study utilized a combination of karst stormwater quality data, along with survey data collected from MS4 Phase II communities, and an analysis of current federal, local, and state water quality regulations, to assess the need for karst-specific water quality regulations. Water quality data indicate that significant levels of contamination are mobilized during storm events, and often are directed into the karst system via Class V injection wells. Survey data collected from MS4 stakeholders in the karst regions of Kentucky indicate stakeholders are generally unable to explain local karst regulations or the steps taken to develop them. This confusion comes in part from insufficient progress on evaluation criteria available for the MS4 Minimum Control Measures (MCMs). Karst waters are often placed into the legal “gray zone” due in part to differences in definitions of key terms in state and federal regulations. This study recommends the development of regulations specific to karst waters at the state and federal levels through either the adaptation of existing or creation of new policies, which place an emphasis on the integration of water quality monitoring and karst education.
|
Page generated in 0.0827 seconds