• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Balkböjning och signalbehandling / Beam bending and signal processing

Forsling Ekblom, Albin, Ohlén, Rickard January 2021 (has links)
I laborationssalarna på KTH i Södertälje, som i huvudsak används till elektrorelaterade ämnen, har det funnits ett antal balkmodeller med monterade töjningsgivare. Dessa har inte använts på många år och det saknas vidare uppgifter om modellerna. Uppdraget bestod av att utarbeta en laboration till KTH:s undervisning. Laborationen skulle handla om balkböjning och signalbehandling, med tonvikt på̊ det senare. Som hjälpmedel skulle vi använda oss av balkmodellerna. I uppdraget ingick det också att undersöka balkmodellernas elektriska och mekaniska egenskaper. Med teknisk balkteori skulle en möjlig relation mellan nedböjning och töjning tas fram. Med balkmodellen i en bryggkoppling kunde dess signal via ett DAQ-kort överföras till en PC och LabVIEW för vidare behandling. I LabVIEW kan ett anpassat gränssnitt tas fram och för visning av valda parametrar. Bryggkopplingen balanseras med hjälp av en potentiometer. I gränssnittet kan spänningsförändringen i bryggan observeras när balken påverkas av nedböjning. Efter kalibrering av systemet kan töjning och nedböjning presenteras efter beräkningar i LabVIEW. För att erhålla en så stabil och brusfri signal som möjligt har gruppen använt sig avbåde ett hårdvarufilter av lågpass-typ och ett mjukvarufilter i LabVIEW. Signalen förstärks med hjälp av en OP-förstärkare innan den matas in i DAQ-kortet. Trots sin ålder kunde balkmodellerna fortfarande användas och ge stabila signaler för vidarebehandling. Modellerna kan med fördel användas i en laboration för studenter och färdigt underlag finns för detta. Laborationen bör öka förståelsen för hur en signal från en givare kan förstärkas, filtreras och behandlas vidare i detta fall för grundläggande hållfasthetsberäkningar. / In the laboratory at KTH in Södertälje, which are mainly used for electro-related subjects, there are a number of beam models with mounted strain gauges. These have not been used for many years and there is no further information about the models. The assignment consisted of preparing a laboratory task for KTH's teaching. The laboratory would consist of beam bending and signal processing, with emphasis on the latter. As an aid, the beam models will be used, these consisted of a fixed aluminum beam with mounted strain gauges. The assignment also includes examining the electrical and mechanical properties of the beam models. With technical beam theory, a possible relationship between deflection and strain would be developed. With the beam model connected in a bridge connection, its signal could be transferred via a DAQ card to a PC and LabVIEW for further processing. In LabVIEW, a custom interface can be created and for displaying selected parameters. The bridge coupling is balanced with the help of a potentiometer. In the interface, the voltage change in the bridge can be observed when the beam is affected by deflection. After calibration of the system in the interface, strain and deflection can be presented according to calculations in LabVIEW. To obtain as stable and noise-free a signal as possible, the group has used both a low-pass hardware filter and a LabVIEW software filter. The signal is amplified by an OP amplifier before being fed into the DAQ card. Despite their age, the beam models could still be used and give stable signals for further treatment. The models can be used to advantage in a laboratory for students and there is a ready basis for this. The laboratory should increase the understanding of how a signal from a sensor can be amplified, filtered and further processed in this case for basic strength calculations.
22

Use of triple beam resonant gauges in torque measurement transfer standard

Intiang, Jittakant January 2010 (has links)
A new torque transfer standard using metallic TBTF resonant sensor was developed to overcome the overload capability problem which occurs with conventional metallic resistance strain gauges. Previous research work, however, has shown that the first prototype of the metallic TBTF resonant sensor was not suitable for use in a torque transfer standard due to its size and subsequent sensitivity to parasitic lateral forces. To maximize the benefits from this sensor, particularly overload capability and long-term stability, in the high accuracy torque measurement application area, there is a need to develop significantly smaller devices. The aim of this thesis is to research through FEA modelling and experimental characterisation the key performance parameters required to produce a miniaturised metallic TBTF resonant sensor that provides better performance when applied in a torque measurement system. For high accuracy any torque transducer using these sensors ought to have low sensitivity to parasitic influences such as bending moments and lateral forces, which can only be achieved with reduced size. The problems with the existing design, key design issues, possible configuration and packaging solutions of the metallic TBTF resonant sensor that could be used for achieving a higher accuracy torque transfer standard are considered. Two designs of miniaturised metallic TBTF resonant sensors, SL20 and SL12, are considered and experimentally investigated. The lateral forces are reduced by 52% for SL20 design and by 80% for SL12 design when compared to the original SL40 design. A torque transducer using the SL20 design was calibrated falling into the Torque Transfer Standard class of accuracy 1 category, uncertainty 0.8%. A torque transducer using the SL12 design was made and calibration showed a class of accuracy 0.5 category, uncertainty 0.2%. The results from this research indicate that the SL12 design is suitable for use in a torque transfer standard. The SL12 design is optimal and the smallest size possible based on the overload capability design criteria requiring the tine cross sectional area to remain constant.
23

Structural health monitoring the Traffic Bridge in Saskatoon using strain gauges

MacLeod, Alison Barbara 12 April 2011
The steel through-truss Traffic Bridge, located in Saskatoon, Saskatchewan is over one hundred years old. The bridge has been subject to ongoing maintenance throughout its service life. However, inspection reports from 2005 and 2006 highlighted the severe deterioration experienced primarily by the steel members immediately above and below the deck surface. These reports prompted the City of Saskatoon (COS) to implement a rehabilitation project that involved the installation of a post-tensioning system to relieve the badly corroded bottom chord members of the axial loads due to the self-weight of the structure, in 2006. Due to the severe deterioration and the structural modifications that the Traffic Bridge has endured, a limited scope structural health monitoring (SHM) system, based on strain measurements, was implemented to reduce some of the uncertainty regarding the active load paths occurring at the deck level.<p> The objectives of the SHM study were to obtain more information regarding the actual load paths and ascertain possible types of structural redundancy, to determine how to best model this type of structure, and to find ways to track ongoing deterioration using instrumentation. The SHM study involved controlled truck loading scenarios to permit measurement of the load paths and provide data to compare the measured results to a finite element (FE) model of the instrumented span. In addition, random loading scenarios were used to capture the vertical dynamic response of the structure in order to further refine the FE model.<p> This study focused on the response of one-half of one interior span. A total of 72 strain gauges were installed. The downstream truss was highly instrumented at ten locations, three members of the upstream truss were instrumented to measure the distribution, and the floor joists in the downstream lane were instrumented to establish possible redundancy paths.<p> Using an FE model in combination with the measured strain data, it was found that redundant load paths only existed at the level of the deck. The bottom chord members experienced non-zero strains once the control vehicle was past the span, possibly indicating some level of redundancy. The members believed to relieve a portion of the bottom chord tensile forces included the car joists, edge joists, and the timber deck. The amount of force transferred from the bottom chord to the deck members was found by FE analysis to be highly related to the lateral stiffness of the floor beams.<p> The FE model was adjusted to match the measured results by modifying various modelling parameters. The most important features of the model were that all deck elements were modelled to be located at the elevation of the bottom chord, that the lateral stiffness of the floor beams was reduced by 50% to best represent the transfer of forces to deck elements, and that the stiffness of bottom chord members was reduced to 80% of their pristine values. In combination with calibrated modification factors applied to the measured values, this FE model is believed to be a useful tool to represent the behaviour of the structure to assist in detecting further damage by modelling the strain differential between members, and components of members.
24

Structural health monitoring the Traffic Bridge in Saskatoon using strain gauges

MacLeod, Alison Barbara 12 April 2011 (has links)
The steel through-truss Traffic Bridge, located in Saskatoon, Saskatchewan is over one hundred years old. The bridge has been subject to ongoing maintenance throughout its service life. However, inspection reports from 2005 and 2006 highlighted the severe deterioration experienced primarily by the steel members immediately above and below the deck surface. These reports prompted the City of Saskatoon (COS) to implement a rehabilitation project that involved the installation of a post-tensioning system to relieve the badly corroded bottom chord members of the axial loads due to the self-weight of the structure, in 2006. Due to the severe deterioration and the structural modifications that the Traffic Bridge has endured, a limited scope structural health monitoring (SHM) system, based on strain measurements, was implemented to reduce some of the uncertainty regarding the active load paths occurring at the deck level.<p> The objectives of the SHM study were to obtain more information regarding the actual load paths and ascertain possible types of structural redundancy, to determine how to best model this type of structure, and to find ways to track ongoing deterioration using instrumentation. The SHM study involved controlled truck loading scenarios to permit measurement of the load paths and provide data to compare the measured results to a finite element (FE) model of the instrumented span. In addition, random loading scenarios were used to capture the vertical dynamic response of the structure in order to further refine the FE model.<p> This study focused on the response of one-half of one interior span. A total of 72 strain gauges were installed. The downstream truss was highly instrumented at ten locations, three members of the upstream truss were instrumented to measure the distribution, and the floor joists in the downstream lane were instrumented to establish possible redundancy paths.<p> Using an FE model in combination with the measured strain data, it was found that redundant load paths only existed at the level of the deck. The bottom chord members experienced non-zero strains once the control vehicle was past the span, possibly indicating some level of redundancy. The members believed to relieve a portion of the bottom chord tensile forces included the car joists, edge joists, and the timber deck. The amount of force transferred from the bottom chord to the deck members was found by FE analysis to be highly related to the lateral stiffness of the floor beams.<p> The FE model was adjusted to match the measured results by modifying various modelling parameters. The most important features of the model were that all deck elements were modelled to be located at the elevation of the bottom chord, that the lateral stiffness of the floor beams was reduced by 50% to best represent the transfer of forces to deck elements, and that the stiffness of bottom chord members was reduced to 80% of their pristine values. In combination with calibrated modification factors applied to the measured values, this FE model is believed to be a useful tool to represent the behaviour of the structure to assist in detecting further damage by modelling the strain differential between members, and components of members.
25

Nejistota měření přetvoření a mechanického napětí pomocí odporových tenzometrů / THE UNCERTAINTIES DEFORMATION AND STRESS USING THE STRAIN GAUGES

Dokoupil, Pavel January 2018 (has links)
The dissertation thesis deals with the determination of uncertainty of strain measurement and the stress using resistance strain gages. You can find two methods to define the uncertainty in the thesis, GUF and MMC, and both are applied for measurements carried out with resistance strain gages. Definition of the measurement uncertainty was set for the strain measured by uniaxial and biaxial strain gages. The uncertainty of the stress was defined for linear strain gages, T Rosettes and Rosettes. There were universal mathematic-technical models defined to measure strain and stress, these models can be used either for standard and special measurements i.e. high-temperature, or for measurements in radiation field. Each part of the strain uncertainty and stress is analyzed from the point of view of a size of uncertainty and a form of probability of the function that strain and stress can adopt. The maximum focus was dedicated to the mistakes influencing measured strain like strain gage properties, installation and operating influences, external influences, time effects and the influence of the measured object. There are two mistakes influencing the stress described and analyzed in the thesis, the mistake of the Young’s modulus of elasticity and the mistake of the Poisson’s ratio. The thesis is conceived as a complex of information related to the measurement uncertainties using the resistance strain gages and methods of defining the measurement uncertainty in a way that the experimenter can apply the gained info and methods in the required measurements. The final chapters give representative examples to define measurement uncertainties for uniaxial and biaxial stress applying GUF and MMC method. The thesis also includes the experiment that compares measured values of strain, stress and measurement uncertainties, using several different types of strain gages at different temperatures, with theoretical calculation of strain and with stress. The experiment was carried out using the displacement sensor that works on an elementary principle of bending load.
26

Experimentální stanovení zatížení letounu / Experimental load definition

Dratva, Jakub January 2018 (has links)
The thesis is focused on experimental load definition of an aircraft. Especially is measured bending moment is measured on wing during the flight. The thesis includes theoretical basis for strain gauge measurements and procedure of statistic evaluation. For each of flight maneuvers, there are theoretical wing loads calculated and then the values are compared. The end of the thesis shows proposals for improvement of used method of flight possible repeated measurement.
27

Tréningový systém pro sportovní lezce / Training system for clibmers

Polach, Pavel January 2013 (has links)
The purpose of this diploma thesis was design and realisation of measuring system, enabling measuring forces between climber´s feet and holds on the climbing wall and using this measu-red values during a training of sport climber. In this thesis there are discovered possibilities about constructing this system and determina-ted basic requirements of measuring. There are also stated principles of application the strain gauges for measuring the tension. Descriptions of developping specific sensors, hardware interface and PC application are also part of this thesis. Constructed system was used for mea-suring climbers and values were analysed by using the application.
28

Torque transducer sensitivity study / Känslighetsstudie av momentgivare

Narayanan Soundararajan, Hari January 2014 (has links)
A torque transducer or a torque sensor is a device for measuring and recording the torque on a rotating system. Torque transducers usually employ strain gauges to measure the torsional moment applied to a rotating shaft.It is to be noted that for an ideal torque transducer, it should measure only the strain that is caused by a torque. Strain due to bending load should be compensated as per the Wheatstone bridge arrangement. However, because of geometrical tolerances and assembly errors, the compensation doesn’t occur and the measured strain is a resultant of bending loads and axial loads which are undesired to measure the torque associated with the system. An analytical formulation has been developed using Matlab and this thesis gives the generalized indication of the strain due to all the associated loads. The user shall also entire the region where the strain needs to be computed and this knowledge can be useful for placing the strain gauges in the shaft accordingly. Initially, the formulation is based on a standard Torque Transducer used at Atlas Copco and then, a generalized result has been developed. The theoretical formulation is verified using the ProEngineer Mechanica software. The end user shall enter the different loads (if any) along with the geometrical tolerance values and the output will be an indication of the strain at point, strain at a region and sensitivity. The main intention of the thesis is to create a better understanding of the strain associated with the twisting, bending and axial loads and also the geometrical imperfections. The user can also make a decision on the location of strain gauges on a shaft for maximum accuracy. Finally, the differences in error from different possible configurations are compared and a conclusion has been made based on factorial design pertaining to design of experiments. / Momentgivare är små sensorer som används för att mäta och registrera vridmomentet på en roterande axel. Momentgivare baseras vanligtvis på trådtöjningsmätare för att mäta vridmomentetet kring axeln de är fixerade på. Det skall noteras att en ideal momentgivare endast bör mäta den yttöjning som uppkommer på grund av ett vridmoment. Den belastning som uppkommer på grund av axelns böjning kompenseras bort med hjälp av en Wheatstonebrygga. Men på grund av geometriska toleranser och monteringsfel kan kompensationen bli felaktig och då påverkas det uppmätta momentet även av böj och axialbelastningar vilket är oönskat. En analytisk modell har utvecklats med hjälp av Matlab och denna rapport undersöker de olika lastfallens bidrag till momentfelet. Användaren kan ange området där yttöjningen skall beräknas och utifrån de beräkningarna bestämma var trådtöjningsgivarna bör placeras. Inledningsvis är beräkningarna baserade på en av Atlas Copcos momentgivare och sedan har generaliserade resultat utvecklats. De teoretiska beräkningarna verifieras med hjälp av programmet ProEngineer Mechanica. Användaren kan ange vilka belastningar som axeln känner samt de geometriska toleransvärdena och modellen beräknar då ytspänningen för den valda regionen. Det huvudsakliga syftet med denna avhandling är att skapa en bättre förståelse av ytspänningen som uppkommer på grund av vridning, böjning och axiella belastningar och även geometriska imperfektioner. Modellen kan också användas för att göra beräkningar som visar var töjningsgivare bör placeras på axeln för maximal precision. Slutligen har de introducerade felet från de olika möjliga konfigurationerna jämförts och en slutsats har dragits baserat på faktorförsök.
29

Application of High-Deflection Strain Gauges to Characterize Spinal-Motion Phenotypes Among Patients with CLBP

Baker, Spencer Alan 12 April 2024 (has links) (PDF)
Chronic low back pain (CLBP) is a nonspecific and persistent ailment that entails many physiological, psychological, social, and economic consequences for individuals and societies. Although there is a plethora of treatments available to treat CLBP, each treatment has varying efficacy for different patients, and it is currently unknown how to best link patients to their ideal treatment. However, it is known that biopsychosocial influences associated with CLBP affect the way that we move. It has been hypothesized that identifying phenotypes of spinal motion could facilitate an objective and repeatable method of determining the optimal treatment for each patient. The objective of this research was to develop an array of high deflection strain gauges to monitor spinal motion, and use that information to identify spinal-motion phenotypes. The high deflection strain gauges used in this endeavor exhibit highly nonlinear electrical signal due to their viscoelastic material properties. Two sub-models were developed to account for these nonlinearities: the first characterizes the relationship between quasistatic strain and resistance, and the second accounts for transient electrical phenomena due to the viscoelastic response to dynamic loads. These sub-models are superimposed to predict and interpret the electrical signal under a wide range of applications. The combined model accurately predicts sensor strain with a mean absolute error (MAE) of 1.4% strain and strain rate with an MAE of 0.036 mm/s. Additionally, a multilayered architecture was developed for the strain gauges to provide mechanical support during high strain, cyclic loads. The architecture significantly mitigates sensor creep and viscoplastic deformation, thereby reducing electrical signal drift by 74%. This research also evaluates the effects of CLBP on patient-reported outcomes. An exploratory factor analysis revealed that there are five primary components of well-being: Pain and Physical Limitations, Psychological Distress, Physical Activity, Sleep Deprivation, and Pain Catastrophizing. The presence of CLBP has adverse effects on all these components. It was also observed that different patient reported outcomes are highly correlated with each other, and the presence of CLBP is a significant moderating factor in many of these relationships. Arrays of high-deflection strain gauges were used to collect spinal kinematic data from 274 subjects. Seven phenotypes of spinal motion were identified among study participants. Statistical analyses revealed significant differences in the patient-reported outcomes of subjects who exhibited different phenotypes. This is a promising indication that the phenotypes may also provide important information to clinicians who treat patients suffering from CLBP. Future research will be conducted to develop and identify the optimal treatments for patients according to their phenotypes, which has the potential to reduce medical costs, expedite recovery, and improve the lives of millions of patients worldwide.
30

The Design, Prototyping, and Validation of a New Wearable Sensor System for Monitoring Lumbar Spinal Motion in Daily Activities

Bischoff, Brianna 11 June 2024 (has links) (PDF)
Lower back pain is a widespread problem affecting millions worldwide, because understanding its development and effective treatment remains challenging. Current treatment success is often evaluated using patient-reported outcomes, which tend to be qualitative and subjective in nature, making objective success measurement difficult. Wearable sensors can provide quantitative measurements, thereby helping physicians improve care for countless individuals around the world. These sensors also have the potential to provide longitudinal data on daily motion patterns, aiding in monitoring the progress of treatment plans for lower back pain. In this work it was hypothesized that a new wearable sensor garment that makes use of high-deflection strain gauge technology--called the Z-SPINE System--will be capable of collecting biomechanical information capable of detecting characteristics of motion associated with chronic lower back pain from subjects as compared to skin-adhered wearable sensor systems. The initial prototyping development of the Z-SPINE System focused on optimizing the device's conformity to the skin, as well as the ease of use and comfortability of the design. Preliminary motion capture tests concluded that a waist belt made of an elastic four way stretch material with silicone patches and no ribbing had the highest skin conformity of the garment types tested, and further design decisions were made utilizing this knowledge. A human subject study was conducted with 30 subjects who performed 14 functional movements with both the Z-SPINE System, and the SPINE Sense System--a pre-existing wearable sensor system that utilizes the same high-deflection strain gauge technology and is adhered directly to the back. Multiple features were extracted from the strain sensor datasets for use in machine learning modeling, where the model was trained to distinguish the different movements from each other. The accuracy of the model was assessed using 4 different category number variations--two 4 category, one 7 category, and one 13 category variation. Four different machine learning models were used, with the random forest classifier generally performing the best, yielding prediction accuracies of 85.95% for the SPINE Sense System data, and 71.23% for the Z-SPINE System data in the 4 category tests. As an additional part of the human subject study, the usability of the Z-SPINE System was also assessed. Each participant filled out a system usability scale questionnaire in regards to their opinion and experience with the system after having used it; the average score given by participants was 83.4, with general feedback consisting of positive remarks about the comfort and ease of use of the current design and suggestions for improving the battery placement and fit of the Z-SPINE system. It is concluded that a machine learning model of the data from the Z-SPINE System can identify biomechanical motion with reasonable accuracy as compared to a skin-adhered wearable sensor system when the number of categories is limited. It is also concluded that the system is simple and intuitive to use.

Page generated in 0.0635 seconds