• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 15
  • 15
  • 13
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

What models and representations do Swedish upper secondary school teachers use in their teaching about the atom?

Netzell, Elisabeth January 2016 (has links)
This report presents the results from a survey study on Swedish upper secondary school physics andchemistry teachers’ use of models and representations in teaching the atom. The study builds upon an earlier systematic international literature review on the role of models and representations in the teaching, learning and understanding of the atom. The overall aim of the study is to explore what models and representations are used by Swedish upper secondary school physics and chemistry teachers in their teaching about the atom, what informs teachers’ selection of the atomic models and representation forms and how they specifically use them in their teaching of the atom. The method for collecting the data for this study was an electronic questionnaire containing six introductory questions followed by nine open and four closed items, which were analysed both quantitatively and qualitatively. Thirty-one responses were received and analysed in this study. The results of the study indicate that Swedish teachers’ selection and use of atomic models and representation forms in their practice correspond with findings in the previously conducted literature review. For example, the Bohr atomic model was shown to be the most popular for teaching about the atom amongst the Swedish teachers in this study, since it is deemed intuitive and easy to visualize. A further result revealed that the de Broglie atomic model was only used by physics teachers, and that physics teachers overall used more atomic models in their teaching than chemistry teachers, a finding that might be related to the different teaching content in physics and chemistry. The study also shows that Swedish teachers are very comfortable with, and advocate, using different representation forms in their teaching. One interesting finding in this regard was that the use of physical models is predominantly more popular among chemistry than physics teachers. In line with the findings in the previous literature review study, students’ prior knowledge and individual learning styles were found tobe important influencing factors in teachers’ selection of representation forms to use in the classroom.The majority of the teachers also agreed on that it is important to explain to students how models should be interpreted and used, but one interesting finding, that differs from the previous research, is that some teachers were of the opinion that students have an already well-developed modelling ability when encountering different models of the atom.
12

Teachers' Formative Assessment Use to Check for Understanding and to Adjust Instruction

Kenyon, Bobbi Jo 01 January 2019 (has links)
School leaders at an urban high school in the U.S. Midwest encouraged teachers to use formative assessment to help students meet learning goals; however, several years later, they found inconsistent implementation. Without a clear understanding of teachers' formative assessment practices, leaders could not establish needed supports for its consistent use in the classrooms. The purpose of this bounded qualitative case study was to examine teachers' formative assessment use to check for student understanding and to adjust instruction. Black and Wiliam's formative assessment theory formed the foundation of this study. Research questions focused on teachers' perceptions of formative assessment and usage of formative assessment for instruction. Ten state certified high school teachers, who had at least a bachelor's degree, passed basic skills and subject area examinations, and taught within their majors or minors, were purposefully selected to provide data. Data were gathered from observations, interviews, and teacher logs and were analyzed inductively using open and axial coding strategies. Results showed teachers collected and used formative assessment to modify instruction and determine student understanding from a limited number of students. Furthermore, they lacked the knowledge, skills, and strategies to implement formative assessment to help all students meet learning goals. Based on the findings, 3 professional development (PD) sessions were created to help school leaders provide support for teachers' consistent formative assessment implementation. These endeavors may contribute to positive social change when administrators provide teachers with PD to increase teachers' knowledge and skills using formative assessment, and, ultimately, to meet student learning goals.
13

Biochemistry Students' Understandings of Enzyme-Substrate Interactions as Investigated through Multiple Representations and the Enzyme-Substrate Interactions Concept Inventory

Linenberger, Kimberly J. 18 November 2011 (has links)
No description available.
14

Use of Multiple Representations to Explore Students’ Understandings of Covalent and Ionic Bonding as Measured by the Bonding Representations Inventory

Luxford, Cynthia Joan 19 April 2013 (has links)
No description available.
15

Evaluation of a Novel Biochemistry Course-Based Undergraduate Research Experience (CURE)

Stefan M Irby (6326255) 15 May 2019 (has links)
<p>Course-based Undergraduate Research Experiences (CUREs) have been described in a range of educational contexts. Although various learning objectives, termed anticipated learning outcomes (ALOs) in this project, have been proposed, processes for identifying them may not be rigorous or well-documented, which can lead to inappropriate assessment and speculation about what students actually learn from CUREs. Additionally, evaluation of CUREs has primarily relied on student and instructor perception data rather than more reliable measures of learning.This dissertation investigated a novel biochemistry laboratory curriculum for a Course-based Undergraduate Research Experience (CURE) known as the Biochemistry Authentic Scientific Inquiry Lab (BASIL). Students participating in this CURE use a combination of computational and biochemical wet-lab techniques to elucidate the function of proteins of known structure but unknown function. The goal of the project was to evaluate the efficacy of the BASIL CURE curriculum for developing students’ research abilities across implementations. Towards achieving this goal, we addressed the following four research questions (RQs): <b>RQ1</b>) How can ALOs be rigorously identified for the BASIL CURE; <b>RQ2</b>) How can the identified ALOs be used to develop a matrix that characterizes the BASIL CURE; <b>RQ3</b>) What are students’ perceptions of their knowledge, confidence and competence regarding their abilities to perform the top-rated ALOs for this CURE; <b>RQ4</b>) What are appropriate assessments for student achievement of the identified ALOs and what is the nature of student learning, and related difficulties, developed by students during the BASIL CURE? To address these RQs, this project focused on the development and use of qualitative and quantitative methods guided by constructivism and situated cognition theoretical frameworks. Data was collected using a range of instruments including, content analysis, Qualtrics surveys, open-ended questions and interviews, in order to identify ALOs and to determine student learning for the BASIL CURE. Analysis of the qualitative data was through inductive coding guided by the concept-reasoning-mode (CRM) model and the assessment triangle, while analysis of quantitative data was done by using standard statistical techniques (e.g. conducting a parried t-test and effect size). The results led to the development of a novel method for identifying ALOs, namely a process for identifying course-based undergraduate research abilities (PICURA; RQ1; Irby, Pelaez, & Anderson 2018b). Application of PICURA to the BASIL CURE resulted in the identification and rating by instructors of a wide range of ALOs, termed course-based undergraduate research abilities (CURAs), which were formulated into a matrix (RQs 2; Irby, Pelaez, & Anderson, 2018a,). The matrix was, in turn, used to characterize the BASIL CURE and to inform the design of student assessments aimed at evaluating student development of the identified CURAs (RQs 4; Irby, Pelaez, & Anderson, 2018a). Preliminary findings from implementation of the open-ended assessments in a small case study of students, revealed a range of student competencies for selected top-rated CURAs as well as evidence for student difficulties (RQ4). In this way we were able to confirm that students are developing some of the ALOs as actual learning outcomes which we term VLOs or verified learning outcomes. In addition, a participant perception indicator (PPI) survey was used to gauge students’ perceptions of their gains in knowledge, experience, and confidence during the BASIL CURE and, therefore, to inform which CURAs should be specifically targeted for assessment in specific BASIL implementations (RQ3;). These results indicate that, across implementations of the CURE, students perceived significant gains with large effect sizes in their knowledge, experience, and confidence for items on the PPI survey (RQ3;). In our view, the results of this dissertation will make important contributions to the CURE literature, as well as to the biochemistry education and assessment literature in general. More specifically, it will significantly improve understanding of the nature of student learning from CUREs and how to identify ALOs and design assessments that reveal what students actually learn from such CUREs - an area where there has been a dearth of available knowledge in the past. The outcomes of this dissertation could also help instructors and administrators identify and align assessments with the actual features of a CURE (or courses in general), use the identified CURAs to ensure the material fits departmental or university needs, and evaluate the benefits of students participating in these innovative curricula. Future research will focus on expanding the development and validation of assessments so that practitioners can better evaluate the efficacy of their CUREs for developing the research competencies of their undergraduate students and continue to render improvements to their curricula.</p>

Page generated in 0.1291 seconds