Spelling suggestions: "subject:"trouville"" "subject:"liouville""
21 |
Kendine eş olmayan Sturm-Liouville operatörlerinin spektral analizi /Tuncer, Havva Şule. Paşaoğlu, Bilender. January 2009 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Anabilim Dalı, 2009. / Kaynakça var.
|
22 |
MecÃnica QuÃntica NÃo-aditiva / Nonadditive Quantum MechanicsJoÃo Philipe Macedo Braga 15 October 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Nesta Tese, apresentamos a mecÃnica quÃntica nÃo-aditiva (MQNA), uma teoria desenvolvida a partir de primeiros princÃpios com o intuito de entender quais sÃo os efeitos da mÃtrica do espaÃo na teoria quÃntica. Em espaÃos nÃo-euclideanos, uma translaÃÃo de comprimento ∆x nÃo leva necessariamente uma partÃcula de uma posiÃÃo x para outra x + ∆x. O resultado dessa translaÃÃo depende da mÃtrica. Esse à o ponto de partida para o desenvolvimento da MQNA. AtravÃs de uma redefiniÃÃo do operador translaÃÃo, obtivemos novas relaÃÃes de comutaÃÃo entre os operadores posiÃÃo e momentum e uma equaÃÃo tipo equaÃÃo de SchrÃdinger que descreve a evoluÃÃo temporal do estado da partÃcula. Mostramos que essa equaÃÃo, juntamente com certas condiÃÃes de contorno, pode ser vista como um problema de Sturm-Liouville, garantindo que as energias da partÃcula sÃo reais e que os autoestados da hamiltoniana sÃo ortonormais e formam uma base no espaÃo dos estados. Apesar dessas modificaÃÃes, mostramos que continuam vÃlidos o determinismo na evoluÃÃo temporal, o princÃpio da superposiÃÃo e a conservaÃÃo local e global da probabilidade. Em contrapartida, generalizamos o teorema de Ehrenfest, mostrando que, para os valores mÃdios das grandezas fÃsicas, a MQNA cai na mecÃnica clÃssica em um referencial nÃo inercial, e demonstramos a existÃncia de uma incerteza mÃnima diferente de zero no momentum. AlÃm disso, investigamos, tanto classicamente como quanticamente, os efeitos dinÃmicos da mÃtrica na evoluÃÃo temporal de uma partÃcula livre. Para realizar a simulaÃÃo quÃntica tivemos que adaptar a tÃcnica split operator para resolver numericamente a nova equaÃÃo de SchrÃdinger. Por fim, exploramos a possibilidade de mapearmos diversos problemas fÃsicos de naturezas distintas atravÃs do surgimento de um potencial efetivo, consequÃncia de uma simples mudanÃa de coordenadas. / In this thesis, we study the nonadditive quantum mechanics (NAQM), which is a theory developed from first principles in order to understand the effects of the space metric in the quantum theory. In non-Euclidean spaces, the translation of length ∆x does not necessarily take a particle from the position x to x + ∆x. The result of this translation depends on the metric. This is the starting point for the development of the NAQM. Through a redefinition of the translation operator, we obtain new commutation relations between the position operator and the momentum operator, and a SchrÃdinger-like equation which describes the time evolution of the state of a particle. We show that this equation, with appropriate boundary conditions, can be seen as a Sturm-Liouville problem, ensuring that the energies of the particle are real and that the eigenstates of the hamiltonian are orthonormal and form a basis in the space of the states. In spite of these modifications, we show the determinism in the time evolution, the superposition principle and the local and global probability conservation remain valid. On the other hand, we generalize the Ehrenfest theorem, showing that, for the average values of the physical quantities, the NAQM is identical to the classical mechanics in a non-inertial reference frame, and we demonstrate the existence of a nonzero minimum uncertainty for the momentum. Besides, we investigate, classically as well as quantically, the dynamical effects of the metric in the time evolution of a free particle. In order to perform the quantum simulation, we adapt the split operator technique to solve numerically the new SchrÃdinger equation. Lastly, we explore the possibility of mapping of several physical problems of different nature through the arising of an effective potential which appears due to a simple change of coordinates.
|
23 |
Inverse Problems for Various Sturm-Liouville OperatorsCheng, Yan-Hsiou 04 July 2005 (has links)
In this thesis, we study the inverse nodal problem and inverse
spectral problem for various Sturm-Liouville operators, in
particular, Hill's operators.
We first show that the space of Schr"odinger operators under
separated boundary conditions characterized by ${H=(q,al, e)in
L^{1}(0,1) imes [0,pi)^{2} : int_{0}^{1}q=0}$ is homeomorphic
to the partition set of the space of all admissible
sequences $X={X_{k}^{(n)}}$ which form sequences that
converge to $q, al$ and $ e$ individually. The definition of
$Gamma$, the space of quasinodal sequences, relies on the $L^{1}$
convergence of the reconstruction formula for $q$ by the exactly
nodal sequence.
Then we study the inverse nodal problem for Hill's equation, and
solve the uniqueness, reconstruction and stability problem. We do
this by making a translation of Hill's equation and turning it
into a Dirichlet Schr"odinger problem. Then the estimates of
corresponding nodal length and eigenvalues can be deduced.
Furthermore, the reconstruction formula of the potential function
and the uniqueness can be shown. We also show the quotient space
$Lambda/sim$ is homeomorphic to the space $Omega={qin
L^{1}(0,1) :
int_{0}^{1}q = 0, q(x)=q(x+1)
mbox{on} mathbb{R}}$. Here the space $Lambda$ is a collection
of all admissible
sequences $X={X_{k}^{(n)}}$ which form sequences that
converge to $q$.
Finally we show that if the periodic potential function $q$ of
Hill's equation is single-well on $[0,1]$, then $q$ is constant if
and only if the first instability interval is absent. The same is
also valid for convex potentials. Then we show that similar
statements are valid for single-barrier and concave density
functions for periodic string equation. Our result extends that of
M. J. Huang and supplements the works of Borg and Hochstadt.
|
24 |
A model of Sturm-Liouville operators defined on graphs and the associated Ambarzumyan problemHung, Yi-Chieh 30 January 2008 (has links)
In this thesis, we study the Pokornyi's model of a
Sturm-Liouville operator defined on graphs. The model, proposed by Pokornyi and Pryadiev in 2004, is derived from the consideration of minimal energy of a system of interlocking springs oscillating in a medium with resistance. Here the system of springs is defined as a graph $Gamma$ with edges $R(Gamma)={gamma_i:i=1,dots,n}$ and set of internal vertices $J(Gamma)$. Let $partialGamma$ denote the set of boundary vertices of $Gamma$. For each vertex ${f v}in J(Gamma)$, we let $Gamma({f v})={gamma_iin R(Gamma):~{f v}$ is an endpoint of $ gamma_i}$. The related eigenvalue problem of the model is as follows: egin{eqnarray*}
-(p_iy_i')'+q_iy_i&=&lambda y_i,~~~~~qquad mbox{on}~gamma_i, y_i({f v})&=&y_j({f v}),~~~~~~~~forall {f v}in J(Gamma)~
mbox{and}~gamma_i,gamma_jin Gamma({f v}),
sum_{gamma_iin Gamma({f v})}p_i({f v})frac{dy({f v})}{dgamma_i}+q({f v})y({f v})&=&lambda y({f v}),qquad ~~forall {f v}in J(Gamma), end{eqnarray*} equipped with Neumann or Dirichlet boundary conditions. This model is also a special case of some quantum graphs defined by Kuchment . par We shall derive the model and discuss the spectral properties. We shall also solve several Ambarzumyan problems on the model. In particular, we show that for a $n$-star shaped graph of uniform length $a$ with $p_iequiv1$, if ${frac{(m+frac{1}{2})^2)pi^2}{a^2}:min Ncup{0}}$ are Neumann eigenvalues, $0$ is the least Neumann eigenvalue, and $q_i({f v})=0$ for ${f v}in J(Gamma)$, then $q=0$ on $Gamma$.
|
25 |
A Model for the Estimation of Residual Stresses in Soft TissuesJoshi, Sunnie 2012 August 1900 (has links)
This dissertation focuses on a novel approach for characterizing the mechanical behavior of an elastic body. In particular, we develop a mathematical tool for the estimation of residual stress field in an elastic body that has mechanical properties similar to that of the arterial wall, by making use of intravascular ultrasound (IVUS) imaging techniques. This study is a preliminary step towards understanding the progression of a cardiovascular disease called atherosclerosis using ultrasound technology. It is known that residual stresses play a significant role in determining the overall stress distribution in soft tissues. The main part of this work deals with developing a nonlinear inverse spectral technique that allows one to accurately compute the residual stresses in soft tissues. Unlike most conventional experimental, both in vivo and in vitro, and theoretical techniques to characterize residual stresses in soft tissues, the proposed method makes fundamental use of the finite strain non- linear response of the material to a quasi-static harmonic loading. The arterial wall is modeled as a nonlinear, isotropic, slightly compressible elastic body. A boundary value problem is formulated for the residually stressed arterial wall, the boundary of which is subjected to a constant blood pressure, and then an idealized model for the IVUS interrogation is constructed by superimposing small amplitude time harmonic infinitesimal vibrations on large deformations via an asymptotic construction of its solution. We then use a semi-inverse approach to study the model for a specific class of deformations. The analysis leads us to a system of second order differential equations with homogeneous boundary conditions of Sturm-Liouville type. By making use of the classical theory of inverse Sturm-Liouville problems, and root finding and optimization techniques, we then develop several inverse spectral algorithms to approximate the residual stress distribution in the arterial wall, given the first few eigenfrequencies of several induced blood pressures.
|
26 |
Spectral properties of a class of analytic operator functions and their linearizationsTrunk, Carsten. Unknown Date (has links) (PDF)
Techn. University, Diss., 2002--Berlin.
|
27 |
Mecânica Quântica Não-aditiva / Nonadditive Quantum MechanicsBraga, João Philipe Macedo January 2015 (has links)
BRAGA, João Philipe Macedo. Mecânica Quântica Não-aditiva. 2015. 62 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-11-05T20:20:37Z
No. of bitstreams: 1
2015_tese_jpmbraga.pdf: 564039 bytes, checksum: 2f103f04eaf29689dc72e53d169b3906 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-11-05T20:20:56Z (GMT) No. of bitstreams: 1
2015_tese_jpmbraga.pdf: 564039 bytes, checksum: 2f103f04eaf29689dc72e53d169b3906 (MD5) / Made available in DSpace on 2015-11-05T20:20:57Z (GMT). No. of bitstreams: 1
2015_tese_jpmbraga.pdf: 564039 bytes, checksum: 2f103f04eaf29689dc72e53d169b3906 (MD5)
Previous issue date: 2015 / In this thesis, we study the nonadditive quantum mechanics (NAQM), which is a theory developed from first principles in order to understand the effects of the space metric in the quantum theory. In non-Euclidean spaces, the translation of length ∆x does not necessarily take a particle from the position x to x + ∆x. The result of this translation depends on the metric. This is the starting point for the development of the NAQM. Through a redefinition of the translation operator, we obtain new commutation relations between the position operator and the momentum operator, and a Schrödinger-like equation which describes the time evolution of the state of a particle. We show that this equation, with appropriate boundary conditions, can be seen as a Sturm-Liouville problem, ensuring that the energies of the particle are real and that the eigenstates of the hamiltonian are orthonormal and form a basis in the space of the states. In spite of these modifications, we show the determinism in the time evolution, the superposition principle and the local and global probability conservation remain valid. On the other hand, we generalize the Ehrenfest theorem, showing that, for the average values of the physical quantities, the NAQM is identical to the classical mechanics in a non-inertial reference frame, and we demonstrate the existence of a nonzero minimum uncertainty for the momentum. Besides, we investigate, classically as well as quantically, the dynamical effects of the metric in the time evolution of a free particle. In order to perform the quantum simulation, we adapt the split operator technique to solve numerically the new Schrödinger equation. Lastly, we explore the possibility of mapping of several physical problems of different nature through the arising of an effective potential which appears due to a simple change of coordinates. / Nesta Tese, apresentamos a mecânica quântica não-aditiva (MQNA), uma teoria desenvolvida a partir de primeiros princípios com o intuito de entender quais são os efeitos da métrica do espaço na teoria quântica. Em espaços não-euclideanos, uma translação de comprimento ∆x não leva necessariamente uma partícula de uma posição x para outra x + ∆x. O resultado dessa translação depende da métrica. Esse é o ponto de partida para o desenvolvimento da MQNA. Através de uma redefinição do operador translação, obtivemos novas relações de comutação entre os operadores posição e momentum e uma equação tipo equação de Schrödinger que descreve a evolução temporal do estado da partícula. Mostramos que essa equação, juntamente com certas condições de contorno, pode ser vista como um problema de Sturm-Liouville, garantindo que as energias da partícula são reais e que os autoestados da hamiltoniana são ortonormais e formam uma base no espaço dos estados. Apesar dessas modificações, mostramos que continuam válidos o determinismo na evolução temporal, o princípio da superposição e a conservação local e global da probabilidade. Em contrapartida, generalizamos o teorema de Ehrenfest, mostrando que, para os valores médios das grandezas físicas, a MQNA cai na mecânica clássica em um referencial não inercial, e demonstramos a existência de uma incerteza mínima diferente de zero no momentum. Além disso, investigamos, tanto classicamente como quanticamente, os efeitos dinâmicos da métrica na evolução temporal de uma partícula livre. Para realizar a simulação quântica tivemos que adaptar a técnica split operator para resolver numericamente a nova equação de Schrödinger. Por fim, exploramos a possibilidade de mapearmos diversos problemas físicos de naturezas distintas através do surgimento de um potencial efetivo, consequência de uma simples mudança de coordenadas.
|
28 |
Kompleks potansiyele sahip Sturm-Liouville operatörü için ters saçılma problemi ve bazı uygulamaları /Çakır, Abdurrahman. Paşaoğlu, Bilender. January 2007 (has links) (PDF)
Tez (Yüksek Lisans) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Anabilim Dalı, 2007. / Kaynakça var.
|
29 |
Περιγραφή και μελέτη προβλημάτων συνοριακών τιμώνΠασχαλίδου, Μαρία 07 July 2010 (has links)
Σκοπός της παρούσας εργασίας είναι η ανάλυση προβλημάτων συνοριακών τιμών. Αρχικά αναφέρονται στοιχεία γραμμικής ανάλυσης και συγκεκριμένα εισάγεται η έννοια ενός τελεστή και τα είδη τελεστών που υπάρχουν, καθώς και η σημασία τους στη Φυσική. Επίσης, δίνεται ο ορισμός της διαφορικής εξίσωσης (Σ.Δ.Ε), ο ορισμός ενός προβλήματος αρχικών τιμών και ο ορισμός ενός προβλήματος συνοριακών τιμών. Έπειτα, αναλύεται η θεωρία Sturm-Liouville και περιγράφονται παραδείγματα συνοριακών τιμών τα οποία επιλύονται με αυτή. Ακόμη, μελετώνται οι συναρτήσεις Green και δίνονται παραδείγματα εφαρμογών τους. Στη συνέχεια εξάγεται η κυματική εξίσωση με τη βοήθεια του μοντέλου της ταλαντούμενης χορδής και επιλύεται με τη μέθοδο του χωρισμού των μεταβλητών για διάφορους τύπους αρχικών και συνοριακών τιμών. Κατόπιν, περιγράφονται μέθοδοι για την επίλυση προβλημάτων συνοριακών τιμών που συνδέονται με την εξίσωση της θερμότητας και μετά αναφέρονται εφαρμογές που προκύπτουν από την επίλυση προβλημάτων διάδοσης θερμότητας. Τέλος αναφέρεται η θεωρία Fredholm και η έννοια της κατανομής και δίνονται παραδείγματα λύσεων των διαφορικών εξισώσεων με την έννοια των κατανομών. Η θεωρία Fredholm είναι ιδιαίτερα σημαντική σε προβλήματα διαφορικών εξισώσεων που είναι μη ομογενή. / In the present project, the initial boundary value problems are analyzed. Firstly, elements of linear analysis are introduced. Particularly the concept of an operator and its types are introduced as well as the importance in the physics sector. Also, the definition of a differential equation and the initial boundary value problems are presented. Additionally, the theory of Sturm-Liouville and its example are described. Moreover, Green function and their applications are introduced. Furthermore, the wave equation was elicited with the basis of vibrating spring model and solved with the method of separating variables. Also with this method and by using Fourier series the heat equation was solved. Finally the theory of Fredholm and the concept of distribution are described. The theory of Fredholm is important in problems of not homogeneous differential equation problems.
|
30 |
Etude spectrale d'opérateurs de Sturm-Liouville et applications à la contrôlabilité de problèmes paraboliques discrets et continus / Study of spectral properties of Sturm Liouville operators and applications in null controllability of discretized and continuous parabolic problemsAllonsius, Damien 26 September 2018 (has links)
Dans cette thèse, nous étudions la contrôlabilité à zéro de quelques systèmes paraboliques continus et semi-discrétisés. Nous considérons tout d'abord des systèmes en cascade d'équations paraboliques de la forme ∂t −(∂xγ∂x +q). La variable spatiale évolue dans un intervalle réel borné et ce système est semi-discrétisé en espace par un schéma aux différences finies. En appliquant la méthode des moments, nous démontrons des résultats de contrôlabilité à zéro et de φ(h) contrôlabilité à zéro, suivant les hypothèses formulées sur le maillage et les fonctions γ et q. Puis nous étendons ces résultats lorsque la variable d'espace évolue dans un domaine cylindrique, la zone de contrôle se situant dans une partie d'une section au bord du cylindre. Ce domaine cylindrique se décompose en un produit de deux espaces. Sur le premier, de dimension 1, nous appliquons les résultats décrits précédemment. Sur le second, nous appliquons la méthode de Lebeau-Robbiano. Cette approche permet à la fois de montrer que le problème discrétisé est φ(h) contrôlable à zéro et de retrouver un résultat de contrôlabilité à zéro sur le système continu. Dans une autre partie, nous nous intéressons au temps minimal de contrôle à zéro de l'équation de Grushin posée sur un domaine rectangulaire dont le domaine de contrôle est une bande verticale. L'étude se ramène à une infinité dénombrable, indexée par le paramètre de Fourier $n$, de problèmes de contrôle à zéro d'équations paraboliques, traitée, ici encore, à l'aide de la méthode des moments. / In this thesis, we study the null controllability of some continous and semi discretized parabolic systems. We first consider cascade systems of parabolic equations of the form ∂t −(∂xγ∂x +q). The space variable belongs to a real and bounded interval and this system is semi-discretized in space by a finite differences scheme. Applying the so called moments method, we prove null controllability and φ(h) null controllability results, depending on the hypotheses on the mesh and on functions γ and q. Then, we extend this results when the space variable belongs to a cylindrical domain which control zone is in a section at the border of the cylinder. This cylindrical domain is decomposed into a product of two spaces. On the first, of dimension 1, we apply the results described previously. On the second, we use the Lebeau-Robbiano's procedure. In this framework, we prove φ(h) null controllability results on the discretized domain as well as null controllability results on the continous problem. In another section, we investigate the computation of minimal time of null controllability of Grushin's equation defined on a rectangular domain which control region is a vertical strip. This problem of control amounts to study a countably infinite family, indexed by the Fourier parameter $n$, of null control problems of parabolic equations, tackled, once again, with the moments method.
|
Page generated in 0.0878 seconds