• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 109
  • 19
  • 16
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 336
  • 96
  • 91
  • 85
  • 72
  • 72
  • 71
  • 43
  • 42
  • 34
  • 32
  • 27
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Characterizing the Evolution of Slab Inputs in the Earliest Stages of Subduction: Preliminary Evidence from the Fluid-Mobile Element (B, Cs, As, Li) Systematics of Izu-Bonin Boninitic Glasses Recovered During IODP Expedition 352

Sanatan, Keir Aavon 23 March 2017 (has links)
Fluid-mobile elements (FMEs) such as B, Cs, As, Li and Tl can mobilize readily under low P-T conditions (0.2-0.5 GPa). This makes them effective geochemical tracers that can be used as a way of tracking fluid-rock exchanges at the shallow depths encountered in the earliest stages of subduction. The Izu-Bonin-Mariana (IBM) subduction system is unique in that it preserves a record of the sequences produced from the onset of subduction through the development of arc magmatism. International Ocean Discovery Program (IODP) Expedition 352 recovered >800m of boninite core material from the earliest IBM magmatic events. Select boninitic glasses from these IODP 352 cores, found mostly as selvages on the rinds of pillow lavas and as clasts within hyaloclastites, were examined via EPMA and laser ablation ICP-MS techniques. The boninite glasses analyzed were separated into two categories – low-silica boninite (LSB) and high-silica boninites (HSB), based on the bulk chemistry and mineralogy of the lithostratigraphic locations from which the glass samples occur in the drill core. LSB are the earlier erupted boninite series, which show both greater variation in extent of differentiation and reflect less depleted mantle sources than HSB. Boron concentrations in the Expedition 352 boninite glasses analyzed range from 0.08 to 12.91 ppm, arsenic contents vary from 0.15 to 3.26 ppm, and cesium varies from 0.01 to 0.91 ppm. Lithium concentrations in the boninites range from 1 to 18.35 ppm while Tl concentrations vary from 10 to 155 ppb. FME concentrations trend toward higher values in HSB than in LSB. Low-Si boninites appear to form via simple mixing of depleted mantle source and an FME enriched fluid endmember, which mobilizes B, As, Cs, (Tl) and Li very early in the subduction process. Coupled with inputs from upwelling mantle, this FME-rich fluid triggers fluid-fluxed boninite melting. The high-Si boninites reflect the addition of a subduction component with a higher Ba/La ratio than that of the depleted mantle; this higher ratio more closely resembles that of Mariana cherts from altered Pacific crust. Thus, the high-Si boninites are consistent with the fluid-fluxed melting of a highly depleted, harzburgitic mantle source and reflect inputs of two distinguishable slab-derived components, one that is sedimentary in nature and another that is FME-enriched. This model for melting that is more similar to the melting regime of modern arcs and reflects the transition from early extension-related melting into that of a “normal” subduction system.
202

Significance of Stress Interactions Related to the Occurrence of Shallow Slow Earthquakes / 浅部スロー地震の発生に関連した応力変化とその相互作用

Katakami, Satoshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22258号 / 理博第4572号 / 新制||理||1656(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 伊藤 喜宏, 教授 James Mori, 教授 岩田 知孝 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
203

Evolution of the Mio-Pleistocene forearc basin induced by the plate subduction in the Boso Peninsula, central Japan / プレート沈み込みによる房総半島新第三系および第四系前弧海盆の形成過程

Kamiya, Nana 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22424号 / 工博第4685号 / 新制||工||1731(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 林 為人, 教授 小池 克明, 准教授 村田 澄彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
204

Discovery of Paleotsunami Deposits along Eastern Sunda Arc: Potential for Megathrust Earthquakes in Bali

Sulaeman, Hanif Ibadurrahman 01 December 2018 (has links)
Several laterally extensive candidate tsunami deposits are preserved along coastlines facing the eastern Java Trench, indicating it has experienced mega-thrust earthquakes in the past. We investigated 37 coastal sites in Bali, Lombok, Sumba and Timor islands, many of which preserve course sand and pebble layers that overlie sharp basal contacts with scour marks into the mud, fine upward in grain size, and have bimodal grain size distributions. Other unique features are the common occurrence of marine fossils and concentrations of heavy minerals. The occurrence of these high-energy deposits interlayered with clay-rich units indicates the coarse clastics are anomalous because they were deposited in what is normally a very low-energy depositional environment. The lateral extent and paucity of thin, coarse clastic layers with marine organisms are inconsistent with local stream flood event, and the proximity to the equator of the sites diminishes the possibility of marine flood events from cyclones. The sparse, but consistent, the occurrence of at least two candidate tsunami deposits at depths of 1 and 2 meters over 950 km along the strike of the Java Trench may reveal that mega-thrust earthquakes have occurred there and generated giant tsunamis in the recent past. Five widely scattered imbricated boulder deposits are also found on Bali, Lombok, and Sumba. The boulders consist of slabs of hardpan up to 2.5 m in length and 80 cm thick that was torn from a near-shore seabed and stacked on top of one another. Some of the boulders were carried over the erosional coastal bank and deposited up to 100 meters inland. Comparisons with imbricated boulder ridges formed during the 1994 tsunami in east Java indicate that these deposits are from one or multiple tsunamis sourced by the Java Trench. Experiments in effective ways to communicate and implement tsunami disaster mitigation strategies have led us to train local communities about the 20-20-20 rule. If coastal communities experience more than 20 seconds of shaking from an earthquake, even if it is not intense, they should evacuate the coast. The time delay between the earthquake and arrival of tsunami waves is around 20 minutes, which is the time window for evacuation. Some tsunami waves may be as high as 20 meters, which is the target elevation for evacuation. Adopting the 20-20-20 rule could save thousands of lives throughout the region, especially in Bali where nearly 1 million people inhabit likely tsunami inundation zones.
205

Petrology of an oxidized blueschist cobble from the San Onofre Breccia, California, USA

Helm, Alaina A. 29 July 2021 (has links)
No description available.
206

INVESTIGATING EOCENE TO ACTIVE TECTONICS OF THE ALASKAN CONVERGENT MARGIN THROU GH GEOLOGIC STUDIES AND 3-D NUMERICAL MODELING

Hannah Grace Weaver (10692984) 07 May 2021 (has links)
<div> <div> <div> <p>The combination of field-based studies and numerical modeling provides a robust tool for evaluating geologic and geodynamic processes along a convergent margin. Complex and persistent tectonic activity and a novel suite of geophysical observations make the southern Alaskan convergent margin a key region to evaluate these processes through both basin analysis studies and geodynamic modeling. This conceptual approach is utilized to explore the active driving forces of surface deformation throughout southcentral Alaska, as well as the geologic record of regional Cenozoic tectonic processes. </p> <p>New sedimentologic, chronostratigraphic, and provenance data from strata that crop out within the central Alaska Range document a previously unrecognized stage of Eocene – early Miocene strike-slip basin development along the northern side of the central Denali fault system. This stage was followed by Miocene-Pliocene deformation and exhumation of the central Alaska Range, and basin development and northward sediment transport into the Tanana foreland basin. This portion of the study provides insight into Cenozoic tectonics and basin development in the central Alaska Range. </p> <p>How transpressional tectonics are manifest in the modern-day, in combination with shallow subduction processes, are not well understood for the southern Alaskan convergent margin. Simulations of the 3-D deformation of this region allow for investigation of the complex relationship between these tectonic processes and surface deformation. Results from this study display the far-field affect that strong plate coupling along the shallowly subducting Yakutat slab has on the surface deformation of southcentral Alaska. Our models also show that partitioning of this convergence is observed along the Denali fault system. Additionally, our results indicate the subducting slab is segmented into separate Pacific, Yakutat and Wrangell slab segments. This variation in slab structure exerts control on the upper plate response to shallow subduction.</p> </div> </div> </div>
207

Zircon U-Pb Age and Trace Element Constraints on the Timing of Subduction Metamorphism in the Tavşanlı Zone, NW Turkey

Studzinski, Andrew J. 04 May 2022 (has links)
No description available.
208

Long-term and short-term processes affecting inelastic deformation above subduction zone interfaces

Oryan, Bar January 2022 (has links)
Numerous observations suggest that the elastic description of the subduction earthquake cycles is incomplete. Micro-seismicity is recorded in active margins that are believed to be locked, while peculiar extensional earthquakes occur in convergent plate boundaries following tsunami earthquakes. The morphology of active margins, which evolves on time scales of 100s of kyr, shows similarities to ongoing deformation documented over 10–100 yrs and the coastal domains of Cascadia, Chile, and other subduction zones record long-term uplift. Lastly, the very threshold where faults break and earthquake nucleate has been vigorously debated for years. In this thesis, I combine various geophysical tools to study short- and long-term processes and learn how their interplay can shape the deformation field imparted by earthquake cycles, mainly in the upper plate of subduction zones. In the first chapter, I analyze surface heat flow measurements taken in the proximity of the southern Dead Sea fault to demonstrate its friction is 0.27±0.17. In the second chapter, I compute an updated horizontal and vertical GNSS velocity field for Bangladesh, Myanmar, and adjacent regions. I show that the Kabaw fault, which lies east of the primary thrust system, is accommodating shortening that was initially attributed to the main thrust and demonstrate that the Indo-Burma subduction is locked, converging, and capable of hosting great megathrust events. In the third chapter, I use thermomechanical models to show that reducing the dip angle of a subducting slab, on a timescale of millions of years, can result in extensional fault failure above a megathrust earthquake on timescales of seconds to months. In the fourth chapter, I demonstrate how the buildup of interseismic elastic stresses brings sections of the forearc into compressional failure, which yields irreversible uplift of the coastal domain per evidence from Chile. Finally, I argue that combining short- and long-term processes into subduction zone models can better mitigate tsunami and earthquake hazards. I show how long-term reduction of slab dip angle could culminate in devastating tsunamis. I argue that the collection of long-term uplift records of upper plates or volcanic arc migration can constrain slab dip changes and so may identify areas with increased tsunami potential. In addition, upper plate irreversible deformation should be introduced to earthquake rupture models as these may hold significant implications for understanding and mitigating earthquake hazards.
209

Metamorphic P-T Path and Multiple Fluid Events During Burial and Exhumation of the Tso Morari UHP Terrane, NW Himalaya

Pan, Ruiguang 11 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Tso Morari terrane within the Himalayan orogenic belt underwent ultrahigh-pressure (UHP) coesite-eclogite metamorphism due to northward subduction of the Indian continent under the Eurasian continent during the early Eocene. In this study we optimized a best protocol for thermodynamically modelling pressure-temperature (P-T) paths of high-grade metabasites using the Tso Morari eclogite as a case study through evaluating the effects of employing commonly used thermodynamic modeling techniques (e.g., programs, thermodynamic datasets, a-X relations). A “fishhook” shaped clockwise P-T path was obtained with a peak pressure of ~28.5 kbar at ~563 °C, followed by a peak temperature of ~613 °C at ~24.5 kbar. The peak pressures predicted by modelling protocols are consistent with the conventional thermobarometry results and petrographic observations from the Tso Morari eclogites. Secondly, thermodynamic modelling using P-M(H2O) pseudosections on Tso Morari UHP rocks indicates three distinct fluid events during the prograde and retrograde metamorphism. Fluid Event 1 caused the fluid-assisted homogenization of prograde garnet cores in eclogite at ~18.5 kbar and ~555 °C; Fluid Event 2 is evidenced by the formation of poikiloblastic epidote (~23.5 kbar and ~610 °C, at the expense of lawsonite) and amphibole (from ~19.0 to ~14.5 kbar at ~610 °C, at the expense of omphacite and talc), and symplectite association (~8.7 kbar and ~625 °C) in the eclogite matrix without external fluid supply. Fluid Event 3 was determined through modelling the amphibolitization of eclogites with external fluid infiltration at ~9.0–12.5 kbar and ~608 °C. This fluid phase most likely derived from the mixing of dehydrated host orthogneiss and/or metasediments during exhumation through the amphibolite-facies zone in the subduction channel. This study demonstrates the need for using careful petrographic observations in parallel with thermodynamic modelling to achieve realistic results. / 2023-12-02
210

Effects of biogenic amorphous silica component in materials entering subduction zones on frictional properties of interplate megathrust / 沈み込み帯に持ち込まれる物質に含まれる生物起源非晶質シリカがプレート境界断層の摩擦特性に与える影響

Namiki, Yuka 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20925号 / 理博第4377号 / 新制||理||1628(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 田上 高広, 教授 下林 典正, 准教授 河上 哲生 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Page generated in 0.0518 seconds