• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 109
  • 19
  • 16
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 337
  • 96
  • 91
  • 86
  • 72
  • 72
  • 71
  • 43
  • 42
  • 34
  • 32
  • 27
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Neogene seismotectonics of the south-central Chile margin : subduction-related processes over various temporal and spatial scales /

Melnick, Daniel, January 2007 (has links)
Thesis (Ph. D.)--Universität Potsdam, 2007. / Includes bibliographical references (p. 83-93). Also available on the Internet.
192

Heterogeneidades do manto litosférico subcontinental sob a Patagônia : influências de subducção na cunha mantélica e de interações litosfera-astenosfera

Gervasoni, Fernanda January 2012 (has links)
A região sul da placa Sul-Americana, hoje pertencente à região da Patagônia Argentina e Chilena, formou-se por consequência de acreções continentais desde o Proterozóico. Atualmente, a região é caracterizada por um complexo sistema de placas tectônicas, no qual as placas oceânicas de Nazca, Antártica e Scotia interagem diretamente com a placa continental Sul-Americana através dos processos de subducção e transcorrência. Entre as placas de Nazca e Antártica, ocorre a dorsal do Chile, e a subducção desta dorsal sob a placa Sul-Americana forma a Junção Tríplice do Chile, ocorrendo o soerguimento da astenosfera na região. O magmatismo Cenozóico de composição alcalina que ocorre na região da Patagônia Argentina e Chilena hospeda xenólitos mantélicos ultramáficos de classificação espinélio- e granada-peridotitos. Estes xenólitos são de extrema importância para a caracterização e identificação dos processos atuantes no manto superior abaixo dessa complexa região que hoje é a Patagônia. Estudos do sistema isotópico Re-Os nos xenólitos de Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), e Chenque (43°38’39.3”S, 68°56’22”W), na região norte da Patagônia Argentina, sugerem que a litosfera abaixo de Prahuaniyeu (TRD ~ 1.69 Ga) é mais antiga que Chenque (TRD ~ 0.71 Ga). Dados de Rb-Sr mostram que a litosfera da região norte da Patagônia possui altas razões 87Sr/86Sr (Prahuaniyeu: 0,7037 a 0,7041; Chenque: 0.7037 a 0.7086), devido fluidos relacionados a desidratação de uma placa de subducção. Através destes dados e dos dados geoquímicos, o manto litosférico subcontinental da região norte da Patagônia sofreu metassomatismo relacionado a slabs derivados de antigas placas de subducção e que proporcionou características de metassomatismo por líquidos/fluidos do tipo-OIB, e atualmente sofreu metassomatismo relacionado aos fluidos derivados da desidratação da placa de subducção atual (Nazca), caracterizados pelo enriquecimento em calcófilos. Todos os peridotitos de Laguna Timone (52°01’39” S, 70°12’53” W), no Campo Vulcânico de Pali Aike, região sul da Patagônia Chilena, também apresentam expressivo enriquecimento nos elementos calcófilos sugerindo que o manto litosférico subcontinental da região sul da Patagônia também foi metasomatisado pelos fluidos derivados da desidratação da placa de subducção atual (Antártica). Em Laguna Timone também há a ocorrência de um glimerito entre os xenólitos e a presença de flogopita e pargasita nos peridotitos classificados como gr-sp lherzolitos, sp-lherzolitos e gr-sp harzburgitos. A presença de um glimerito, de peridotitos com minerais hidratados (flogopita e pargasita) e as similaridades com peridotitos metassomatisados por líquidos astenosféricos (peridotitos do distrito de Manzaz, Argélia e do campo vulcânico Vitim, no lago de Baikal, Sibéria) com baixas razões Ba/Nb, Ba/La e U/Nb, indicam que a litosfera da região sul da Patagônia sofreu metassomatismo por fluidos astenosféricos, ocasionado devido o soerguimento da astensofera durante a passagem da Junção Tríplice do Chile pela região de Pali Aike. / The southern of the South-American plate, today is the Chile and Argentina Patagonia region, was formed as a result of continental accretions since the Proterozoic.Currently, this region is characterized for a complex tectonic plates system, in which Nazca, Antartica and Scotia oceanic plates interact directly to the South-American continental plate by subduction and transcorrent process. Between Nazca and Antartica plate occurs the Chile Ridge, and the Chile Ridge subduction under the South-American plate creates the Chile Triple Junction and the upwelling of underlying asthenospheric mantle in this region. The Cenozoic alkali magamtism that occurs in Patagonia Argentina and Chilena hosts ultramafic mantle xenoliths (spinel- and garnet-peridotites). These xenoliths are extremely important to characterization and identification of the processes that occurred in the upper mantle underneath the Patagonia region. The Re-Os isotopic studies in Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), and Chenque (43°38’39.3”S, 68°56’22”W) xenoliths, in north Patagonia Argentina, suggests the Prahuaniyeu lithosphere (TRD ~ 1.69 Ga) were formed previously to Chenque (TRD ~ 0.71 Ga). Rb-Sr data show high 87Sr/86Sr ratio (Prahuaniyeu: 0.7037 to 0.7041; Chenque: 0.7037 to 0.7086), suggesting interactions with subduction plate dehydration related fluids. Trough this data, and geochemistry data, the sucontinental lithospheric mantle underneath the north Patagonia region suffered two metasomatic events: one related to the OIB-like melt/fluids from slabs derived by ancient subductions; and another related to the fluids derived from the current subducted plate (Nazca) dehydration, characterized by the chalcophiles enrichment. Peridotites from Laguna Timone (52°01’39” S, 70°12’53” W), in the Pali Aike Volcanic Field, southern Patagonia Chilena region, also shows expressive enrichment in chalcophile elements suggesting metasomatism by fluids from currently subduction (Antartica plate). Another kind of metasomatism occurs in subcontinental lithospheric mantle underneath Pali Aike due the glimmerite occurrence, hydrated minerals (phlogopite and pargasite) in peridotites and similarities with peridotites that suffered metasomatism by asthenospheric melts (Manzaz, Argelia peridotites and Vitim Volcanic Field, Baikal, Siberia peridotites), with low Ba/Nb, Ba/La and U/Nb. All these carachteristics suggest that lithosphere suffered interactions between asthenosphere-lithosphere due upwelling of underlying asthenospheric mantle when the Chile Triple Junction was on the same latitude of Pali Aike.
193

Volatiles in basaltic magmas from central Mexico: From subduction to eruption

Johnson, Emily Renee 06 1900 (has links)
xvi, 167 p. ; ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Volatiles, particularly H 2 O, play an important role in subduction zone magmatism, from instigating melting of the mantle wedge to influencing the explosivity of eruptions at the surface. To better understand both small-scale eruptive processes and large-scale melt generation processes, concentrations of H 2 O, CO 2 , Cl and S were measured in olivine-hosted melt inclusions from nine monogenetic volcanoes across the Michoacan-Guanajuato Volcanic Field (MGVF) in central Mexico. Melt inclusions, tiny blebs of melt trapped within crystals during growth, record pre-eruptive melt compositions and dissolved volatile contents. Analyses of olivine-hosted melt inclusions from the long-lived (15 years) eruption of Volcan Jorullo illustrate the complexities of cinder cone eruptions. The later-erupted melt inclusions record decreases in crystallization depths, increases in magma storage time, and shallow assimilation of granitic bedrock, suggesting significant evolution of the magma plumbing system over time. Because melt inclusions are trapped at variable depths during magma crystallization, they record progressive degassing of melts during ascent and eruption. Degassing of basaltic melts is variable due to differences in solubility of the volatile components. Estimated volatile solubilities based on variations in melt inclusion data for the MGVF suggest that Cl and S have high solubility, with little to no degassing of these species during ascent and eruption, whereas H 2 O and CO 2 show evidence of substantial degassing. Furthermore, increases in concentrations of incompatible elements in melt inclusions correlate with extents of degassing, suggesting that degassing during ascent drives melt crystallization in many cinder cone eruptions. The volatile contents of mafic arc magmas as revealed by melt inclusions reflect the influx of H 2 O-rich components from the subducted slab to the mantle wedge. Across-arc patterns in volatile and incompatible trace element concentrations for MGVF magmas show that the flux of H 2 O-rich subduction components remains high for large distances across the arc. These data, combined with oxygen isotope analyses of olivine phenocrysts and 2-D thermo-mechanical models of the subduction zone, suggest a complex origin for the H 2 O-rich subduction components, involving dehydration of subducted sediment and storage of volatiles in hydrous minerals in the mantle wedge. This dissertation includes co-authored materials both previously published and submitted for publication. / Adviser: Paul J. Wallace
194

Controle de mudanças estruturais sob altas pressões e altas temperaturas da esmectita saturada em potássio

Carniel, Larissa Colombo January 2013 (has links)
O manto litosférico é depletado em elementos incompatíveis como potássio, rubídio e estrôncio, confinado sob altas condições de pressão e caracterizado por uma composição e mineralogia específicas: espinélios anidros e/ou granada lherzolitos e harzburgitos. Esta região pode ser hidratada e enriquecida em elementos incompatíveis (ex. potássio) através de processos de subducção, onde a placa oceânica subductada leva consigo material pelágico composto de argilominerais e filossilicatos. A transferência de massa entre a placa subductada com os sedimentos e a cunha mantélica ocorre primeiramente através da liberação de fluidos aquosos gerados pela devolatilização de minerais hidratados. Neste contexto, a esmectita destaca-se como um dos mais importantes minerias responsáveis pelo enriquecimento do manto litosférico em água e elementos incompatíveis, quando sua estrutura é desestabilizada. Com o aumento da pressão e temperatura, esmectitas perdem sua água interlamelar, ao mesmo tempo em que se transformam em camadas mistas esmectita-ilita. Nestas condições de desidratação, e com o aumento da pressão, mudanças estruturais ocorrem e, havendo potássio disponível no sistema, o argilomineral evolui para uma mica muscovita. Considerando este contexto, o presente trabalho tem como objetivo verificar o comportamento estrutural da esmectita saturada em potássio modificando as variáveis pressão e temperatura: (1) sob pressão atmosférica em diferentes temperaturas (100º a 700ºC); (2) sob pressão de até 11.5 GPa sem temperatura - Diamond Anvil Cell (DAC); (3) sob diferentes pressões com aplicação de temperatura: 2.5GPa (400º a 700ºC) e 4.0GPa (200º a 700ºC). Os resultados das técnicas de análise de Difração de raios X, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia por Infravermelho (FTIR) sugerem que, sob uma pressão de 2.5 GPa, que é cerca de 75km de profundidade no manto, e a aproximadamente 500ºC, a esmectita transforma-se em muscovita, enquanto sob a pressão de 4.0 Gpa, equivalente a cerca de 120 km de profundidade, a mesma transformação ocorre a 400ºC. Estes resultados contribuem significativamente para o entendimento de como a desidratação do sedimento pelágico ocorre em um processo de subducção, bem como o comportamento da esmectita sob a influência do aumento de pressão e temperatura. / The lithospheric mantle is depleted regarding to incompatible elements as potassium, rubidium and strontium, confined under pressure conditions and characterized by a specific mineralogy and composition, basically as anhydrous spinel and/or garnet lherzolite and harzburgite. This region can be hydrated and enriched in incompatible elements (e.g. potassium) through subduction processes that bring pelagic material, composed of clay minerals and other phyllosilicates, together with the hydrated subducted oceanic slab. A mass transfer from the subducted slab plus sediments into the mantle wedge occurs primarily through the release of aqueous fluids produced by devolatilization of hydrated minerals. In this context, smectite stands out as one of the most important minerals responsible for enriching the lithospheric mantle with water and incompatible elements when its structure is destabilized. By pressure and temperature increasing smectite lose its interlayer water, at the same time that it transforms into a mixed-layer illite-smectite. In this condition of dehydration and with increasing pressure, structural changes occur and, having potassium available on the system, the clay mineral evolves into a muscovite mica. Considering this context, we verified the structural behavior of potassium saturated smectite modifying variables pressure and temperature: (1) under atmospheric pressure at different temperatures (100º to 700º C); (2) under pressure up 11.5 GPa without temperature - Diamond Anvil Cell (DAC); (3) under different pressures with temperature application: 2.5 GPa (400º to 700º C) and 4.0 GPa (200º to 700º C). The results of the analysis techniques of X-ray diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Infrared Spectroscopy (FTIR), suggest that under the pressure of 2.5 GPa, which is about 75km depth in the mantle, and at around 500ºC smectite transforms into muscovite, while under the pressure of 4.0 GPa, equivalent to around 120km depth, the same transformation occurs at 400ºC. These results contribute significantly to understanding how pelagic sediment dehydration occurs in a subduction process, as well as the behavior of smectite under the influence of increasing pressure and temperature.
195

Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)

Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).
196

Controle de mudanças estruturais sob altas pressões e altas temperaturas da esmectita saturada em potássio

Carniel, Larissa Colombo January 2013 (has links)
O manto litosférico é depletado em elementos incompatíveis como potássio, rubídio e estrôncio, confinado sob altas condições de pressão e caracterizado por uma composição e mineralogia específicas: espinélios anidros e/ou granada lherzolitos e harzburgitos. Esta região pode ser hidratada e enriquecida em elementos incompatíveis (ex. potássio) através de processos de subducção, onde a placa oceânica subductada leva consigo material pelágico composto de argilominerais e filossilicatos. A transferência de massa entre a placa subductada com os sedimentos e a cunha mantélica ocorre primeiramente através da liberação de fluidos aquosos gerados pela devolatilização de minerais hidratados. Neste contexto, a esmectita destaca-se como um dos mais importantes minerias responsáveis pelo enriquecimento do manto litosférico em água e elementos incompatíveis, quando sua estrutura é desestabilizada. Com o aumento da pressão e temperatura, esmectitas perdem sua água interlamelar, ao mesmo tempo em que se transformam em camadas mistas esmectita-ilita. Nestas condições de desidratação, e com o aumento da pressão, mudanças estruturais ocorrem e, havendo potássio disponível no sistema, o argilomineral evolui para uma mica muscovita. Considerando este contexto, o presente trabalho tem como objetivo verificar o comportamento estrutural da esmectita saturada em potássio modificando as variáveis pressão e temperatura: (1) sob pressão atmosférica em diferentes temperaturas (100º a 700ºC); (2) sob pressão de até 11.5 GPa sem temperatura - Diamond Anvil Cell (DAC); (3) sob diferentes pressões com aplicação de temperatura: 2.5GPa (400º a 700ºC) e 4.0GPa (200º a 700ºC). Os resultados das técnicas de análise de Difração de raios X, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET) e Espectroscopia por Infravermelho (FTIR) sugerem que, sob uma pressão de 2.5 GPa, que é cerca de 75km de profundidade no manto, e a aproximadamente 500ºC, a esmectita transforma-se em muscovita, enquanto sob a pressão de 4.0 Gpa, equivalente a cerca de 120 km de profundidade, a mesma transformação ocorre a 400ºC. Estes resultados contribuem significativamente para o entendimento de como a desidratação do sedimento pelágico ocorre em um processo de subducção, bem como o comportamento da esmectita sob a influência do aumento de pressão e temperatura. / The lithospheric mantle is depleted regarding to incompatible elements as potassium, rubidium and strontium, confined under pressure conditions and characterized by a specific mineralogy and composition, basically as anhydrous spinel and/or garnet lherzolite and harzburgite. This region can be hydrated and enriched in incompatible elements (e.g. potassium) through subduction processes that bring pelagic material, composed of clay minerals and other phyllosilicates, together with the hydrated subducted oceanic slab. A mass transfer from the subducted slab plus sediments into the mantle wedge occurs primarily through the release of aqueous fluids produced by devolatilization of hydrated minerals. In this context, smectite stands out as one of the most important minerals responsible for enriching the lithospheric mantle with water and incompatible elements when its structure is destabilized. By pressure and temperature increasing smectite lose its interlayer water, at the same time that it transforms into a mixed-layer illite-smectite. In this condition of dehydration and with increasing pressure, structural changes occur and, having potassium available on the system, the clay mineral evolves into a muscovite mica. Considering this context, we verified the structural behavior of potassium saturated smectite modifying variables pressure and temperature: (1) under atmospheric pressure at different temperatures (100º to 700º C); (2) under pressure up 11.5 GPa without temperature - Diamond Anvil Cell (DAC); (3) under different pressures with temperature application: 2.5 GPa (400º to 700º C) and 4.0 GPa (200º to 700º C). The results of the analysis techniques of X-ray diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Infrared Spectroscopy (FTIR), suggest that under the pressure of 2.5 GPa, which is about 75km depth in the mantle, and at around 500ºC smectite transforms into muscovite, while under the pressure of 4.0 GPa, equivalent to around 120km depth, the same transformation occurs at 400ºC. These results contribute significantly to understanding how pelagic sediment dehydration occurs in a subduction process, as well as the behavior of smectite under the influence of increasing pressure and temperature.
197

Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)

Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).
198

Heterogeneidades do manto litosférico subcontinental sob a Patagônia : influências de subducção na cunha mantélica e de interações litosfera-astenosfera

Gervasoni, Fernanda January 2012 (has links)
A região sul da placa Sul-Americana, hoje pertencente à região da Patagônia Argentina e Chilena, formou-se por consequência de acreções continentais desde o Proterozóico. Atualmente, a região é caracterizada por um complexo sistema de placas tectônicas, no qual as placas oceânicas de Nazca, Antártica e Scotia interagem diretamente com a placa continental Sul-Americana através dos processos de subducção e transcorrência. Entre as placas de Nazca e Antártica, ocorre a dorsal do Chile, e a subducção desta dorsal sob a placa Sul-Americana forma a Junção Tríplice do Chile, ocorrendo o soerguimento da astenosfera na região. O magmatismo Cenozóico de composição alcalina que ocorre na região da Patagônia Argentina e Chilena hospeda xenólitos mantélicos ultramáficos de classificação espinélio- e granada-peridotitos. Estes xenólitos são de extrema importância para a caracterização e identificação dos processos atuantes no manto superior abaixo dessa complexa região que hoje é a Patagônia. Estudos do sistema isotópico Re-Os nos xenólitos de Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), e Chenque (43°38’39.3”S, 68°56’22”W), na região norte da Patagônia Argentina, sugerem que a litosfera abaixo de Prahuaniyeu (TRD ~ 1.69 Ga) é mais antiga que Chenque (TRD ~ 0.71 Ga). Dados de Rb-Sr mostram que a litosfera da região norte da Patagônia possui altas razões 87Sr/86Sr (Prahuaniyeu: 0,7037 a 0,7041; Chenque: 0.7037 a 0.7086), devido fluidos relacionados a desidratação de uma placa de subducção. Através destes dados e dos dados geoquímicos, o manto litosférico subcontinental da região norte da Patagônia sofreu metassomatismo relacionado a slabs derivados de antigas placas de subducção e que proporcionou características de metassomatismo por líquidos/fluidos do tipo-OIB, e atualmente sofreu metassomatismo relacionado aos fluidos derivados da desidratação da placa de subducção atual (Nazca), caracterizados pelo enriquecimento em calcófilos. Todos os peridotitos de Laguna Timone (52°01’39” S, 70°12’53” W), no Campo Vulcânico de Pali Aike, região sul da Patagônia Chilena, também apresentam expressivo enriquecimento nos elementos calcófilos sugerindo que o manto litosférico subcontinental da região sul da Patagônia também foi metasomatisado pelos fluidos derivados da desidratação da placa de subducção atual (Antártica). Em Laguna Timone também há a ocorrência de um glimerito entre os xenólitos e a presença de flogopita e pargasita nos peridotitos classificados como gr-sp lherzolitos, sp-lherzolitos e gr-sp harzburgitos. A presença de um glimerito, de peridotitos com minerais hidratados (flogopita e pargasita) e as similaridades com peridotitos metassomatisados por líquidos astenosféricos (peridotitos do distrito de Manzaz, Argélia e do campo vulcânico Vitim, no lago de Baikal, Sibéria) com baixas razões Ba/Nb, Ba/La e U/Nb, indicam que a litosfera da região sul da Patagônia sofreu metassomatismo por fluidos astenosféricos, ocasionado devido o soerguimento da astensofera durante a passagem da Junção Tríplice do Chile pela região de Pali Aike. / The southern of the South-American plate, today is the Chile and Argentina Patagonia region, was formed as a result of continental accretions since the Proterozoic.Currently, this region is characterized for a complex tectonic plates system, in which Nazca, Antartica and Scotia oceanic plates interact directly to the South-American continental plate by subduction and transcorrent process. Between Nazca and Antartica plate occurs the Chile Ridge, and the Chile Ridge subduction under the South-American plate creates the Chile Triple Junction and the upwelling of underlying asthenospheric mantle in this region. The Cenozoic alkali magamtism that occurs in Patagonia Argentina and Chilena hosts ultramafic mantle xenoliths (spinel- and garnet-peridotites). These xenoliths are extremely important to characterization and identification of the processes that occurred in the upper mantle underneath the Patagonia region. The Re-Os isotopic studies in Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), and Chenque (43°38’39.3”S, 68°56’22”W) xenoliths, in north Patagonia Argentina, suggests the Prahuaniyeu lithosphere (TRD ~ 1.69 Ga) were formed previously to Chenque (TRD ~ 0.71 Ga). Rb-Sr data show high 87Sr/86Sr ratio (Prahuaniyeu: 0.7037 to 0.7041; Chenque: 0.7037 to 0.7086), suggesting interactions with subduction plate dehydration related fluids. Trough this data, and geochemistry data, the sucontinental lithospheric mantle underneath the north Patagonia region suffered two metasomatic events: one related to the OIB-like melt/fluids from slabs derived by ancient subductions; and another related to the fluids derived from the current subducted plate (Nazca) dehydration, characterized by the chalcophiles enrichment. Peridotites from Laguna Timone (52°01’39” S, 70°12’53” W), in the Pali Aike Volcanic Field, southern Patagonia Chilena region, also shows expressive enrichment in chalcophile elements suggesting metasomatism by fluids from currently subduction (Antartica plate). Another kind of metasomatism occurs in subcontinental lithospheric mantle underneath Pali Aike due the glimmerite occurrence, hydrated minerals (phlogopite and pargasite) in peridotites and similarities with peridotites that suffered metasomatism by asthenospheric melts (Manzaz, Argelia peridotites and Vitim Volcanic Field, Baikal, Siberia peridotites), with low Ba/Nb, Ba/La and U/Nb. All these carachteristics suggest that lithosphere suffered interactions between asthenosphere-lithosphere due upwelling of underlying asthenospheric mantle when the Chile Triple Junction was on the same latitude of Pali Aike.
199

Heterogeneidades do manto litosférico subcontinental sob a Patagônia : influências de subducção na cunha mantélica e de interações litosfera-astenosfera

Gervasoni, Fernanda January 2012 (has links)
A região sul da placa Sul-Americana, hoje pertencente à região da Patagônia Argentina e Chilena, formou-se por consequência de acreções continentais desde o Proterozóico. Atualmente, a região é caracterizada por um complexo sistema de placas tectônicas, no qual as placas oceânicas de Nazca, Antártica e Scotia interagem diretamente com a placa continental Sul-Americana através dos processos de subducção e transcorrência. Entre as placas de Nazca e Antártica, ocorre a dorsal do Chile, e a subducção desta dorsal sob a placa Sul-Americana forma a Junção Tríplice do Chile, ocorrendo o soerguimento da astenosfera na região. O magmatismo Cenozóico de composição alcalina que ocorre na região da Patagônia Argentina e Chilena hospeda xenólitos mantélicos ultramáficos de classificação espinélio- e granada-peridotitos. Estes xenólitos são de extrema importância para a caracterização e identificação dos processos atuantes no manto superior abaixo dessa complexa região que hoje é a Patagônia. Estudos do sistema isotópico Re-Os nos xenólitos de Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), e Chenque (43°38’39.3”S, 68°56’22”W), na região norte da Patagônia Argentina, sugerem que a litosfera abaixo de Prahuaniyeu (TRD ~ 1.69 Ga) é mais antiga que Chenque (TRD ~ 0.71 Ga). Dados de Rb-Sr mostram que a litosfera da região norte da Patagônia possui altas razões 87Sr/86Sr (Prahuaniyeu: 0,7037 a 0,7041; Chenque: 0.7037 a 0.7086), devido fluidos relacionados a desidratação de uma placa de subducção. Através destes dados e dos dados geoquímicos, o manto litosférico subcontinental da região norte da Patagônia sofreu metassomatismo relacionado a slabs derivados de antigas placas de subducção e que proporcionou características de metassomatismo por líquidos/fluidos do tipo-OIB, e atualmente sofreu metassomatismo relacionado aos fluidos derivados da desidratação da placa de subducção atual (Nazca), caracterizados pelo enriquecimento em calcófilos. Todos os peridotitos de Laguna Timone (52°01’39” S, 70°12’53” W), no Campo Vulcânico de Pali Aike, região sul da Patagônia Chilena, também apresentam expressivo enriquecimento nos elementos calcófilos sugerindo que o manto litosférico subcontinental da região sul da Patagônia também foi metasomatisado pelos fluidos derivados da desidratação da placa de subducção atual (Antártica). Em Laguna Timone também há a ocorrência de um glimerito entre os xenólitos e a presença de flogopita e pargasita nos peridotitos classificados como gr-sp lherzolitos, sp-lherzolitos e gr-sp harzburgitos. A presença de um glimerito, de peridotitos com minerais hidratados (flogopita e pargasita) e as similaridades com peridotitos metassomatisados por líquidos astenosféricos (peridotitos do distrito de Manzaz, Argélia e do campo vulcânico Vitim, no lago de Baikal, Sibéria) com baixas razões Ba/Nb, Ba/La e U/Nb, indicam que a litosfera da região sul da Patagônia sofreu metassomatismo por fluidos astenosféricos, ocasionado devido o soerguimento da astensofera durante a passagem da Junção Tríplice do Chile pela região de Pali Aike. / The southern of the South-American plate, today is the Chile and Argentina Patagonia region, was formed as a result of continental accretions since the Proterozoic.Currently, this region is characterized for a complex tectonic plates system, in which Nazca, Antartica and Scotia oceanic plates interact directly to the South-American continental plate by subduction and transcorrent process. Between Nazca and Antartica plate occurs the Chile Ridge, and the Chile Ridge subduction under the South-American plate creates the Chile Triple Junction and the upwelling of underlying asthenospheric mantle in this region. The Cenozoic alkali magamtism that occurs in Patagonia Argentina and Chilena hosts ultramafic mantle xenoliths (spinel- and garnet-peridotites). These xenoliths are extremely important to characterization and identification of the processes that occurred in the upper mantle underneath the Patagonia region. The Re-Os isotopic studies in Prahuaniyeu (41°20’09.4”S, 67°54’08.1”W), and Chenque (43°38’39.3”S, 68°56’22”W) xenoliths, in north Patagonia Argentina, suggests the Prahuaniyeu lithosphere (TRD ~ 1.69 Ga) were formed previously to Chenque (TRD ~ 0.71 Ga). Rb-Sr data show high 87Sr/86Sr ratio (Prahuaniyeu: 0.7037 to 0.7041; Chenque: 0.7037 to 0.7086), suggesting interactions with subduction plate dehydration related fluids. Trough this data, and geochemistry data, the sucontinental lithospheric mantle underneath the north Patagonia region suffered two metasomatic events: one related to the OIB-like melt/fluids from slabs derived by ancient subductions; and another related to the fluids derived from the current subducted plate (Nazca) dehydration, characterized by the chalcophiles enrichment. Peridotites from Laguna Timone (52°01’39” S, 70°12’53” W), in the Pali Aike Volcanic Field, southern Patagonia Chilena region, also shows expressive enrichment in chalcophile elements suggesting metasomatism by fluids from currently subduction (Antartica plate). Another kind of metasomatism occurs in subcontinental lithospheric mantle underneath Pali Aike due the glimmerite occurrence, hydrated minerals (phlogopite and pargasite) in peridotites and similarities with peridotites that suffered metasomatism by asthenospheric melts (Manzaz, Argelia peridotites and Vitim Volcanic Field, Baikal, Siberia peridotites), with low Ba/Nb, Ba/La and U/Nb. All these carachteristics suggest that lithosphere suffered interactions between asthenosphere-lithosphere due upwelling of underlying asthenospheric mantle when the Chile Triple Junction was on the same latitude of Pali Aike.
200

Le morphème spatial "y" en espagnol ancien : approche sémantique / The spatial morpheme "y" in old Spanish : semantical approach

Sol Puig, Francisca 16 October 2010 (has links)
Le pronom-adverbe y en espagnol ancien a disparu à la fin du XVe siècle. Il a survécu néanmoins à travers les signes hay, soy, estoy, doy et voy. L’objet de la présente thèse est d’expliquer les raisons de sa disparition, d’une part, et de sa survivance dans ces cinq formes verbales, d’autre part. Elle se divise en deux parties. La première porte sur l’analyse du morphème stématique y et implique l’étude du système de représentation de l’espace. La seconde concerne l’étude des formes verbales dans lesquelles on retrouve ce morphème sous forme astématique et implique une approche sémantique des verbes existentiels. En fonction de la façon dont ses usagers perçoivent le monde, chaque langue élabore un système de représentation de l’espace, qui lui est propre. Dans la langue espagnole deux systèmes s’offraient aux locuteurs médiévaux : l’un représenté par les anaphoriques y et ende, l’autre par les déictiques aquí, acá, ahí, allí, allá, acullá, aquende et allende. Ces deux systèmes – qui se sont opposés jusqu’à la disparition de l’un d’eux, –représentaient une conceptualisation de l’espace différente. Dans le premier de ces systèmes y signifie l’espace indivis. Le deuxième, en revanche, divise l’espace en fonction du MOI locuteur et du lieu que celui-ci occupe. La sémiologie des formes verbales, quant à elle, montre un ensemble spécifique dont les éléments sont marqués dans leur signifiant par ce -y et dont la cohésion est assurée par la sémantèse des verbes existentiels. L’hypothèse présentée ici va à l’encontre de la théorie de la subduction, défendue en particulier par Maurice Molho, qui fonde la coalescence des quatre premières formes verbales sur analogie avec hay. / The adverbial pronoun y vanished from Old Spanish at the end of the XVth century. It survived, however, in the signs hay, soy, estoy, doy et voy. The purpose of the present doctoral dissertation is to explain why the pronoun as such disappeared , in the first place, and why, on the other hand, it did survive in the five above-mentioned verbal forms. The present work is comprised of two sections. The first one analyses the stematic morpheme y, a task which implies studying the system of spatial representations. The second one deals with the verbal forms containing this same morpheme in astematic form and this in turn implies a semantic approach of existential verbs. Every language generates its own system of spatial representation, depending on how its users perceive the world. In Spanish, two different systems were available to the medieval speakers: one represented by the anaphoric elements y and ende, the other one represented by the deictic words aquí, acá, ahí, allí, allá, acullá, aquende and allende. These two systems were harbouring two different conceptualizations of space. In the first system, y signifies space as a whole. The second one, on the contrary, splits the space in relation to the EGO as SPEAKER and to the locus of that EGO. The semiology of the five verbal forms delineates a specific set of elements, the signifiers of which are marked by -y and whose general consistency is based on the semantesis of existential verbs. The hypothesis presented in the present work runs contrary to the subduction theory, advocated in particular by Maurice Molho, which explains the coalescence in the first four verbal forms through an analogy with hay.

Page generated in 0.0699 seconds