• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 11
  • 3
  • 2
  • Tagged with
  • 66
  • 33
  • 24
  • 22
  • 13
  • 13
  • 12
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Unsupervised Anomaly Detection in Numerical Datasets

Joshi, Vineet 05 June 2015 (has links)
No description available.
22

Invariant subspaces of certain classes of operators

Popov, Alexey 06 1900 (has links)
The first part of the thesis studies invariant subspaces of strictly singular operators. By a celebrated result of Aronszajn and Smith, every compact operator has an invariant subspace. There are two classes of operators which are close to compact operators: strictly singular and finitely strictly singular operators. Pelczynski asked whether every strictly singular operator has an invariant subspace. This question was answered by Read in the negative. We answer the same question for finitely strictly singular operators, also in the negative. We also study Schreier singular operators. We show that this subclass of strictly singular operators is closed under multiplication by bounded operators. In addition, we find some sufficient conditions for a product of Schreier singular operators to be compact. The second part studies almost invariant subspaces. A subspace Y of a Banach space is almost invariant under an operator T if TY is a subspace of Y+F for some finite-dimensional subspace F ("error"). Almost invariant subspaces of weighted shift operators are investigated. We also study almost invariant subspaces of algebras of operators. We establish that if an algebra is norm closed then the dimensions of "errors" for the operators in the algebra are uniformly bounded. We obtain that under certain conditions, if an algebra of operators has an almost invariant subspace then it also has an invariant subspace. Also, we study the question of whether an algebra and its closure have the same almost invariant subspaces. The last two parts study collections of positive operators (including positive matrices) and their invariant subspaces. A version of Lomonosov theorem about dual algebras is obtained for collections of positive operators. Properties of indecomposable (i.e., having no common invariant order ideals) semigroups of nonnegative matrices are studied. It is shown that the "smallness" (in various senses) of some entries of matrices in an indecomposable semigroup of positive matrices implies the "smallness" of the entire semigroup. / Mathematics
23

Invariant subspaces of certain classes of operators

Popov, Alexey Unknown Date
No description available.
24

Some Problems in Multivariable Operator Theory

Sarkar, Santanu January 2014 (has links) (PDF)
In this thesis we have investigated two different types of problems in multivariable operator theory. The first one deals with the defect sequence for contractive tuples and maximal con-tractive tuples. These condone deals with the wandering subspaces of the Bergman space and the Dirichlet space over the polydisc. These are described in thefollowing two sections. (I) The Defect Sequence for ContractiveTuples LetT=(T1,...,Td)bead-tuple of bounded linear operators on some Hilbert space H. We say that T is a row contraction, or, acontractive tuplei f the row operator (Pl refer the abstract pdf file)
25

The Pettis Integral and Operator Theory

Huettenmueller, Rhonda 08 1900 (has links)
Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used to construct determining subspaces for T. For example, if T*(Y*) ∩ X is weak* dense in T*(Y*), then T is determined by T*(Y*) ∩ X. Also if ker(T) is weak* closed in X*, then the annihilator of ker(T) (in X) is the unique minimal determining subspace for T.
26

Fundamentos do diagrama de Hasse e aplicações à experimentação / Foundations of Hasse diagram and its applications on experimentation

Alcarde, Renata 24 January 2008 (has links)
A crescente aplicação da estatística às mais diversas áreas de pesquisa, tem definido delineamentos complexos, dificultando assim seu planejamento e análise. O diagrama de Hasse é uma ferramenta gráfica, que tem como objetivo facilitar a compreensão da estrutura presente entre os fatores experimentais. Além de uma melhor visualização do experimento o mesmo fornece, através de regras propostas na literatura, os números de graus de liberdade de cada fator. Sob a condição de ortogonalidade do delineamento, podem-se obter também as matrizes núcleo das formas quadráticas para as somas de quadrados e as esperanças dos quadrados médios, propiciando a razão adequada para a aplicação do teste F. O presente trabalho trata-se de uma revisão, fundamentada na álgebra linear, dos conceitos presentes na estrutura do diagrama. Com base nos mesmos, demonstrou-se o desdobramento do espaço vetorial do experimento em subespaços gerados por seus respectivos fatores, de tal modo que fossem ortogonais entre si. E, a fim de exemplificar as regras e o emprego desta ferramenta, utilizaram-se dois conjuntos de dados, o primeiro de um experimento realizados com cabras Saanen e segundo com capim Marandu, detalhando-se a estrutura experimental, demonstrando-se a ortogonalidade entre os fatores e indicando-se o esquema da análise da vari^ancia. Cabe salientar que o diagrama não substitui o uso de softwares, mas tem grande importância quando o interesse está em se comparar resultados e principalmente verificar o quociente adequado para o teste F. / The increase of statistics applications on the most diverse research areas has defined complex statistics designs turn its planning and analysis really hard. The Hasse diagram is a graphic tool that has as objective turn the comprehension of the present structure among the experimental factors easiest. More than a better experiment overview, by the rules proposed on the literature, this diagram gives the degrees of freedom for each factor. By the condition of design orthogonality, the nucleus matrix of quadratic form for the sum of squares and the expected values for the mean squares can also be obtained, given the proper ratio for F test application. The present work is a review, with its foundations on linear algebra, of the present\'s concepts on the diagram structure. With this basis were demonstrated the development of the vectorial space of the experiment in subspaces generated by its own factors, in a way that it was orthogonal within themselves. And, to give examples about the rules and the application of this tool, experimental data of Saanen goats and other set of data of Marandu grazing were used, with a detailed experiment structure, showing the orthogonality within the factors and with an indication of the analysis of variance model. Has to be emphasized that the diagram do not substitute the usage of software but has a great meaning when the interest is about results comparisons and most of all to check the proper quotient for the F test.
27

Quantum information processing using the power-of-SWAP

Guha Majumdar, Mrittunjoy January 2019 (has links)
This project is a comprehensive investigation into the application of the exchange interaction, particularly with the realization of the SWAP^1/n quantum operator, in quantum information processing. We study the generation, characterization and application of entanglement in such systems. Given the non-commutativity of neighbouring SWAP^1/n gates, the mathematical study of combinations of these gates is an interesting avenue of research that we have explored, though due to the exponential scaling of the complexity of the problem with the number of qubits in the system, numerical techniques, though good for few-qubit systems, are found to be inefficient for this research problem when we look at systems with higher number of qubits. Since the group of SWAP^1/n operators is found to be isomorphic to the symmetric group Sn, we employ group-theoretic methods to find the relevant invariant subspaces and associated vector-states. Some interesting patterns of states are found including onedimensional invariant subspaces spanned by W-states and the Hamming-weight preserving symmetry of the vectors spanning the various invariant subspaces. We also devise new ways of characterizing entanglement and approach the separability problem by looking at permutation symmetries of subsystems of quantum states. This idea is found to form a bridge with the entanglement characterization tool of Peres-Horodecki's Partial Positive Transpose (PPT), for mixed quantum states. We also look at quantum information taskoriented 'distance' measures of entanglement, besides devising a new entanglement witness in the 'engle'. In terms of applications, we define five different formalisms for quantum computing: the circuit-based model, the encoded qubit model, the cluster-state model, functional quantum computation and the qudit-based model. Later in the thesis, we explore the idea of quantum computing based on decoherence-free subspaces. We also investigate ways of applying the SWAP^1/n in entanglement swapping for quantum repeaters, quantum communication protocols and quantum memory.
28

Elliptic operators in even subspaces

Savin, Anton, Sternin, Boris January 1999 (has links)
An elliptic theory is constructed for operators acting in subspaces defined via even pseudodifferential projections. Index formulas are obtained for operators on compact manifolds without boundary and for general boundary value problems. A connection with Gilkey's theory of η-invariants is established.
29

Elliptic operators in odd subspaces

Savin, Anton, Sternin, Boris January 1999 (has links)
An elliptic theory is constructed for operators acting in subspaces defined via even pseudodifferential projections. Index formulas are obtained for operators on compact manifolds without boundary and for general boundary value problems. A connection with Gilkey's theory of η-invariants is established.
30

Elliptic operators in subspaces and the eta invariant

Schulze, Bert-Wolfgang, Savin, Anton, Sternin, Boris January 1999 (has links)
The paper deals with the calculation of the fractional part of the η-invariant for elliptic self-adjoint operators in topological terms. The method used to obtain the corresponding formula is based on the index theorem for elliptic operators in subspaces obtained in [1], [2]. It also utilizes K-theory with coefficients Zsub(n). In particular, it is shown that the group K(T*M,Zsub(n)) is realized by elliptic operators (symbols) acting in appropriate subspaces.

Page generated in 0.0403 seconds