Spelling suggestions: "subject:"subspaces"" "subject:"subspace's""
51 |
Estudo de portas lógicas quânticas de dois qubits definidas em um subespaço livre de decoerência para um sistema de quatro qubits acoplado ao resto do universo por um agente degenerado / A study of two-qubit quantum logic gates defined in a decoherence free subspaces for a four-qubit system coupled to the rest of the universe via a degenerate agentMendonça, Paulo Eduardo Marques Furtado de 23 March 2004 (has links)
Nesta dissertação estudamos, no âmbito teórico, algumas propostas recentes de processamento de informação quântica passiva, isto é, descartando protocolos de correção de erros. Recorrendo à criação de subespaços livres de decoerência através de um sistema físico de quatro spins acoplados ao resto do universo por um agente degenerado, mostramos ser possível construir um conjunto universal de portas lógicas (C-NOT, T e Hadamard) neste mesmo subespaço, alcançando, por conseguinte, a realização de qualquer operação computacional, insensivelmente ao resto do universo. Partimos de um hamiltoniano geral com interações individuais de cada spin com campos externos, além de acoplamentos controlados entre pares de spins. Experimentalmente, hamiltonianos deste tipo são comuns no contexto de junções Josephson, motivo pelo qual tratamos esta implementação em um capítulo especial. Introduzindo perturbativamente ao hamiltoniano operadores espúrios ao subespaço livre de decoerência, incluímos sensibilidade do sistema frente ao ambiente, criando a possibilidade da incursão de erros através de mecanismos de dissipação. Tais mecanismos foram investigados em termos da intensidade do parâmetro de acoplamento entre o sistema e o ambiente, revelando uma clara evidência teórica do Efeito Zenão Quântico, através da excelente concordância entre resultados de operações realizadas em subespaços livres de decoerência e operações realizadas em sistemas fortemente acoplados ao resto do universo. Neste sentido, selecionamos a fidelidade como medida de distância entre um estado em evolução a partir de um certo estado inicial do subespaço livre de decoerência (e submetido a dissipação), e um estado em evolução regida pela mesma operação quântica e a partir das mesmas condições iniciais no caso ideal, livre de decoerência. Essa abordagem explícita permitiu-nos obter a razão necessária entre os parâmetros associados a perturbação (que remove o estado do subespaço original) e acoplamento (entendido como a freqüência entre as medidas promovidas pelo resto do universo), para alcançar a eficiência desejada na realização de uma certa porta lógica. Tecnicamente, o trabalho envolveu vários resultados matemáticos novos e operacionalmente úteis, levando a simplificações importantes durante os cálculos envolvidos. / In this dissertation we studied theoretical aspects of some recent proposals of passive quantum information processing, that is, discarding error correction protocols. Falling back upon the creation of decoherence-free subspaces through a physical system of four spins coupled to the rest of the universe by a degenerate agent, we showed to be possible to build a universal set of logical quantum gates (C-NOT, T and Hadamard) in this same subspace, reaching, consequently, the accomplishment of any computational operation, callously to the rest of the universe. We started from a general Hamiltonian with individual interactions of each spin with external fields, besides controlled couplings between spin pairs. Experimentally, Hamiltonians like this are common in the context of Josephson junctions and, therefore, we treated this implementation in a special chapter. Perturbatively introducing spurious operators to the hamiltonian in the decoherence-free subspace, we included sensibility of the system to the environment, creating the possibility of the incursion of errors through dissipation mechanisms. Such mechanisms were investigated in terms of the intensity of the coupling parameter between the system and the environment, revealing an obvious theoretical evidence of the Quantum Zeno Effect, through the excellent agreement between the results of operations accomplished in decoherence-free subspace and operations accomplished in systems strongly coupled to the rest of the universe. In this sense, we selected the fidelity as the distance measure between a state in evolution starting from a certain initial state of the decoherence-free subspace (and submitted to the dissipation), and a state in evolution governed by the same quantum operation and starting from the same initial conditions in the ideal decoherence-free case. This explicit approach allowed us to obtain the necessary quotient between the associated disturbance parameter (that removes the state from the original subspace) and coupling parameter (understood as the frequency between the measurements promoted by the rest of the universe), to reach the efficiency desired in the accomplishment of a logic gate. Technically, the work involved several new operationally useful mathematical results, leading to important simplifications during the involved calculations.
|
52 |
Information flow at the quantum-classical boundaryBeny, Cedric January 2008 (has links)
The theory of decoherence aims to explain how macroscopic quantum objects become effectively classical. Understanding this process could help in the search for the quantum theory underlying gravity, and suggest new schemes for preserving the coherence of technological quantum devices.
The process of decoherence is best understood in terms of information flow within a quantum system, and between the system and its environment. We develop a novel way of characterizing this information, and give a sufficient condition for its classicality. These results generalize previous models of decoherence, clarify the process by which a phase-space based on non-commutative quantum variables can emerge, and provide a possible explanation for the universality of the phenomenon of decoherence. In addition, the tools developed in this approach generalize the theory of quantum error correction to infinite-dimensional Hilbert spaces.
We characterize the nature of the information preserved by a quantum channel by the observables which exist in its image (in the Heisenberg picture). The sharp observables preserved by a channel form an operator algebra which can be characterized in terms of the channel's elements. The effect of the channel on these observables can be reversed by another physical transformation. These results generalize the theory of quantum error correction to codes characterized by arbitrary von Neumann algebras, which can represent hybrid quantum-classical information, continuous variable systems, or certain quantum field theories.
The preserved unsharp observables (positive operator-valued measures) allow for a finer characterization of the information preserved by a channel. We show that the only type of information which can be duplicated arbitrarily many times consists of coarse-grainings of a single POVM. Based on these results, we propose a model of decoherence which can account for the emergence of a realistic classical phase-space. This model supports the view that the quantum-classical correspondence is given by a quantum-to-classical channel, which is another way of representing a POVM.
|
53 |
Information flow at the quantum-classical boundaryBeny, Cedric January 2008 (has links)
The theory of decoherence aims to explain how macroscopic quantum objects become effectively classical. Understanding this process could help in the search for the quantum theory underlying gravity, and suggest new schemes for preserving the coherence of technological quantum devices.
The process of decoherence is best understood in terms of information flow within a quantum system, and between the system and its environment. We develop a novel way of characterizing this information, and give a sufficient condition for its classicality. These results generalize previous models of decoherence, clarify the process by which a phase-space based on non-commutative quantum variables can emerge, and provide a possible explanation for the universality of the phenomenon of decoherence. In addition, the tools developed in this approach generalize the theory of quantum error correction to infinite-dimensional Hilbert spaces.
We characterize the nature of the information preserved by a quantum channel by the observables which exist in its image (in the Heisenberg picture). The sharp observables preserved by a channel form an operator algebra which can be characterized in terms of the channel's elements. The effect of the channel on these observables can be reversed by another physical transformation. These results generalize the theory of quantum error correction to codes characterized by arbitrary von Neumann algebras, which can represent hybrid quantum-classical information, continuous variable systems, or certain quantum field theories.
The preserved unsharp observables (positive operator-valued measures) allow for a finer characterization of the information preserved by a channel. We show that the only type of information which can be duplicated arbitrarily many times consists of coarse-grainings of a single POVM. Based on these results, we propose a model of decoherence which can account for the emergence of a realistic classical phase-space. This model supports the view that the quantum-classical correspondence is given by a quantum-to-classical channel, which is another way of representing a POVM.
|
54 |
NI-GMRES precondicionadoMedeiros, Elvis N?ris de 22 April 2014 (has links)
Made available in DSpace on 2015-03-03T15:32:44Z (GMT). No. of bitstreams: 1
ElvisNM_DISSERT.pdf: 1325328 bytes, checksum: 26a5738f48a900e63cafc3f1e0b1d776 (MD5)
Previous issue date: 2014-04-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Neste trabalho estudamos o problema n?o linear F(X) = 0, onde F ? continuamente diferenci?vel com F : Rn-> Rn. Para solucion?-lo empregamos o m?todo de Newton Inexato obtendo um sistema linearizado J(xk)sk =-F(xk), onde J(xk) representa a matriz Jacobiana
no ponto xk e o passo iterativo sk ? calculado por meio do m?todo do Res?duo M?nimo
Generalizado (GMRES), que pertence ? fam?lia dos m?todos de proje??o em subespa?os de Krylov. Afim de evitar de evitar o acr?scimo no custo computacional devido ao aumento
a cada itera??o na dimens?o do subespa?o de Krylov utilizamos o GMRES com recome?os ou GMRES(m), o qual pode apresentar problemas de estagna??o (duas solu??es consecutivas iguais ou quase iguais). Uma das maneiras de contornar essa estagna??o
est? no uso de precondicionadores no sistema inicial Ax = b, passando a um sistema equivalente do tipo M-1Ax = M-1b onde a matriz M ? chamada de precondicionador e tem o papel de facilitar a solu??o do sistema inicial. A escolha de precondicionadores ? uma ?rea de pesquisa que remete ao conhecimento espec?fico a priori do problema a ser resolvido e/ou da estrutura da matriz dos coeficientes A. Neste trabalho buscamos estudar o precondicionamento pela esquerda no m?todo do Newton Inexato - GMRES(m). Apresentamos tamb?m uma estrat?gia que permite a mudan?a entre 3 tipos de precondicionadores (Jacobi, ILU e SSOR) dependendo de informa??es advindas da aplica??o do GMRES(m) a cada itera??o do Newton Inexato, ou seja, a cada vez que se resolve o sistema linearizado precondicionado. Assim fazemos ao final uma compara??o entre nossas estrat?gias e o uso de precondicionadores fixos na resolu??o de problemas teste por meio do NI-GMRES
|
55 |
Estudo de portas lógicas quânticas de dois qubits definidas em um subespaço livre de decoerência para um sistema de quatro qubits acoplado ao resto do universo por um agente degenerado / A study of two-qubit quantum logic gates defined in a decoherence free subspaces for a four-qubit system coupled to the rest of the universe via a degenerate agentPaulo Eduardo Marques Furtado de Mendonça 23 March 2004 (has links)
Nesta dissertação estudamos, no âmbito teórico, algumas propostas recentes de processamento de informação quântica passiva, isto é, descartando protocolos de correção de erros. Recorrendo à criação de subespaços livres de decoerência através de um sistema físico de quatro spins acoplados ao resto do universo por um agente degenerado, mostramos ser possível construir um conjunto universal de portas lógicas (C-NOT, T e Hadamard) neste mesmo subespaço, alcançando, por conseguinte, a realização de qualquer operação computacional, insensivelmente ao resto do universo. Partimos de um hamiltoniano geral com interações individuais de cada spin com campos externos, além de acoplamentos controlados entre pares de spins. Experimentalmente, hamiltonianos deste tipo são comuns no contexto de junções Josephson, motivo pelo qual tratamos esta implementação em um capítulo especial. Introduzindo perturbativamente ao hamiltoniano operadores espúrios ao subespaço livre de decoerência, incluímos sensibilidade do sistema frente ao ambiente, criando a possibilidade da incursão de erros através de mecanismos de dissipação. Tais mecanismos foram investigados em termos da intensidade do parâmetro de acoplamento entre o sistema e o ambiente, revelando uma clara evidência teórica do Efeito Zenão Quântico, através da excelente concordância entre resultados de operações realizadas em subespaços livres de decoerência e operações realizadas em sistemas fortemente acoplados ao resto do universo. Neste sentido, selecionamos a fidelidade como medida de distância entre um estado em evolução a partir de um certo estado inicial do subespaço livre de decoerência (e submetido a dissipação), e um estado em evolução regida pela mesma operação quântica e a partir das mesmas condições iniciais no caso ideal, livre de decoerência. Essa abordagem explícita permitiu-nos obter a razão necessária entre os parâmetros associados a perturbação (que remove o estado do subespaço original) e acoplamento (entendido como a freqüência entre as medidas promovidas pelo resto do universo), para alcançar a eficiência desejada na realização de uma certa porta lógica. Tecnicamente, o trabalho envolveu vários resultados matemáticos novos e operacionalmente úteis, levando a simplificações importantes durante os cálculos envolvidos. / In this dissertation we studied theoretical aspects of some recent proposals of passive quantum information processing, that is, discarding error correction protocols. Falling back upon the creation of decoherence-free subspaces through a physical system of four spins coupled to the rest of the universe by a degenerate agent, we showed to be possible to build a universal set of logical quantum gates (C-NOT, T and Hadamard) in this same subspace, reaching, consequently, the accomplishment of any computational operation, callously to the rest of the universe. We started from a general Hamiltonian with individual interactions of each spin with external fields, besides controlled couplings between spin pairs. Experimentally, Hamiltonians like this are common in the context of Josephson junctions and, therefore, we treated this implementation in a special chapter. Perturbatively introducing spurious operators to the hamiltonian in the decoherence-free subspace, we included sensibility of the system to the environment, creating the possibility of the incursion of errors through dissipation mechanisms. Such mechanisms were investigated in terms of the intensity of the coupling parameter between the system and the environment, revealing an obvious theoretical evidence of the Quantum Zeno Effect, through the excellent agreement between the results of operations accomplished in decoherence-free subspace and operations accomplished in systems strongly coupled to the rest of the universe. In this sense, we selected the fidelity as the distance measure between a state in evolution starting from a certain initial state of the decoherence-free subspace (and submitted to the dissipation), and a state in evolution governed by the same quantum operation and starting from the same initial conditions in the ideal decoherence-free case. This explicit approach allowed us to obtain the necessary quotient between the associated disturbance parameter (that removes the state from the original subspace) and coupling parameter (understood as the frequency between the measurements promoted by the rest of the universe), to reach the efficiency desired in the accomplishment of a logic gate. Technically, the work involved several new operationally useful mathematical results, leading to important simplifications during the involved calculations.
|
56 |
Encoding, coordination, and decision making in the primate fronto-parietal grasping networkDann, Benjamin 07 August 2017 (has links)
No description available.
|
57 |
The Matrix Sign Function Method and the Computation of Invariant SubspacesByers, R., He, C., Mehrmann, V. 30 October 1998 (has links)
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results.
|
58 |
Dynamics for the special class of quantum master equationsPietro, Locatelli January 2022 (has links)
The paper is an analysis of a special class of the master equations such that the Dissipation superoperator is L(ρ) = [M, [M, ρ]], where M is an hermitian andunitary operator and ρ a density matrix. It mainly investigates the dynamics ofρ and its properties such as boundness of the operators of the master equation,the eigenvalues of these operators, the purity of the states, the steady states. In the study of the temporal evolution of ρ it has been done an analysis of Decoherence free subspaces(DFS). A special attention is given to von Neumannentropy. For what it regards this last topic there are also specific referencesto the camel-like behaviour, a phenomenon regarding the entropy that happenswhen certain conditions of the dissipation superaoperator are not satisfied.There are Python simulations of the expectation values of some operators, andof the von Neumann entropy, and Linear Entropy.
|
59 |
Restrictions to Invariant Subspaces of Composition Operators on the Hardy Space of the DiskThompson, Derek Allen 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Invariant subspaces are a natural topic in linear algebra and operator theory. In some rare cases, the restrictions of operators to different invariant subspaces are unitarily equivalent, such as certain restrictions of the unilateral shift on the Hardy space of the disk. A composition operator with symbol fixing 0 has a nested sequence of invariant subspaces, and if the symbol is linear fractional and extremally noncompact, the restrictions to these subspaces all have the same norm and spectrum. Despite this evidence, we will use semigroup techniques to show many cases where the restrictions are still not unitarily equivalent.
|
60 |
Numerical Methods for Model Reduction of Time-Varying Descriptor SystemsHossain, Mohammad Sahadet 20 September 2011 (has links) (PDF)
This dissertation concerns the model reduction of linear periodic descriptor systems both in continuous and discrete-time case. In this dissertation, mainly the projection based approaches are considered for model order reduction of linear periodic time varying descriptor systems. Krylov based projection method is used for large continuous-time periodic descriptor systems and balancing based projection technique is applied to large sparse discrete-time periodic descriptor systems to generate the reduce systems.
For very large dimensional state space systems, both the techniques produce large dimensional solutions. Hence, a recycling technique is used in Krylov based projection methods which helps to compute low rank solutions of the state space systems and also accelerate the computational convergence. The outline of the proposed model order reduction procedure is given with more details. The accuracy and suitability of the proposed method is demonstrated through different examples of different orders.
Model reduction techniques based on balance truncation require to solve matrix equations. For periodic time-varying descriptor systems, these matrix equations are projected generalized periodic Lyapunov equations and the solutions are also time-varying. The cyclic lifted representation of the periodic time-varying descriptor systems is considered in this dissertation and the resulting lifted projected Lyapunov equations are solved to achieve the periodic reachability and observability Gramians of the original periodic systems. The main advantage of this solution technique is that the cyclic structures of projected Lyapunov equations can handle the time-varying dimensions as well as the singularity of the period matrix pairs very easily. One can also exploit the theory of time-invariant systems for the control of periodic ones, provided that the results achieved can be easily re-interpreted in the periodic framework.
Since the dimension of cyclic lifted system becomes very high for large dimensional periodic systems, one needs to solve the very large scale periodic Lyapunov equations which also generate very large dimensional solutions. Hence iterative techniques, which are the generalization and modification of alternating directions implicit (ADI) method and generalized Smith method, are implemented to obtain low rank Cholesky factors of the solutions of the periodic Lyapunov equations. Also the application of the solvers in balancing-based model reduction of discrete-time periodic descriptor systems is discussed. Numerical results are given to illustrate the effciency and accuracy of the proposed methods.
|
Page generated in 0.0378 seconds