• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 33
  • 26
  • 24
  • 13
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 343
  • 70
  • 51
  • 51
  • 43
  • 39
  • 32
  • 32
  • 32
  • 28
  • 27
  • 24
  • 23
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Decision Analysis Considering Welfare Impacts in Water Resources Using the Benefit Transfer Approach

Shaqadan, Ashraf 01 May 2008 (has links)
Decision making in environmental management is faced with uncertainties associated with related environmental variables and processes. Decision makers are inclined to use resources to acquire better information in one or more uncertain variable(s). Typically, with limited resources available, characterizing the feasibility of such investment is desirable yet complicated. In the context of reducing inherent uncertainty, decision makers need to tackle two difficult questions, first, the optimal selection of variable(s) and second, the optimal level of information collection which produces maximum gain in benefits. We develop a new framework to assess the socioeconomic value of potential decisions of collecting additional information for given variable(s) to reduce inherent uncertainty. The suggested framework employs advanced social welfare concepts to facilitate eliciting the social acceptability of decisions to collect better information. The framework produces estimates of changes in utility levels and willingness to pay for target population using the benefit transfer method. The practicality of the framework is established using the following common problems in the field of water resources: 1) the uncertainty in exposure to health risk due to drinking a groundwater source contaminated with a carcinogen, 2) the uncertainty in non point source pollution loadings due to unknown hydrologic processes variability, and 3) the equity level in allocating mitigation responsibilities among polluters. For the three applications, the social acceptability of potential decisions is expressed in monetary terms which represent an extension on typical cost benefit analysis by including the socioeconomic value of a decision. The specific contribution of this research is a theoretical framework for a detailed preliminary analysis to transform and represent the given problem in useable terms for the social welfare analysis. The practical framework is attractive because it avoids the need to employ prohibitively expensive survey-based contingent valuation methods. Instead, the framework utilizes benefit transfer method, which imposes a theoretical behavioral structure on population characteristics such as age and income and to produce empirical estimates for a new problem setting.
122

Nutrient Removal and Plant Growth in a Subsurface Flow Constucted Wetland in Brisbane, Australia

Browning, Catharine, n/a January 2003 (has links)
One of the major water quality issues affecting waterways is eutrophication. Controlling the input of nutrients from municipal wastewater treatment plants (WTP’s) is a significant step in reducing eutrophication. Tertiary wastewater treatment for water quality improvement in particular Biological Nutrient Removal (BNR) is often expensive to construct with high maintenance costs. Constructed wetlands (CWs) offer an alternative wastewater treatment and have been used successfully worldwide to treat various types of wastewater. This study investigated the effectiveness of the Oxley Creek horizontal subsurface flow (SSF) CW for tertiary municipal wastewater treatment and the suitability of four native macrophyte species, Baumea articulata, Carex fascicularis, Philydrum lanuginosum and Schoenoplectus mucronatus. The investigation consisted of four main components: 1) Plants: monitoring plant establishment, growth, impact of cropping, gravel size, nutrient content and storage for the four macrophyte species trialed; 2) Water quality - effluent treatment: monitoring water quality and quantity entering and leaving the wetland to determine wastewater treatment; 3) Organic matter: accumulation of organic carbon within the wetland cells for the different gravel sizes (5mm and 20mm) and 4) Mass balance: combining nutrient storage by macrophytes with wastewater nutrient removal to determine proportion of nutrient removal by plant uptake. The Oxley horizontal SSF CW is situated at the Oxley Creek WTP in Brisbane (South- East), Queensland, Australia which has a sub-tropical climate. The experimental design involved four different substrate treatments: Cell A new 5mm gravel, Cells B and C old 20mm gravel and Cell D old 5mm gravel. Cells B, C and D had been operational since 1995 whereas Cell A had been in use since 2000. The wetland received secondary treated effluent direct from the Oxley Creek WTP at an average flow rate of 8L/min with a median hydraulic loading rate (HLR) of 0.12m/day and a hydraulic retention time (HRT) of 2 to 3 days. Each cell consisted of three gravel sections (Section 1 to 3) separated by 1m wide open water sections. Gravel Sections 2 and 3 were planted out with the four macrophyte species in October 2000, Section 1 remained unplanted. Plant health and leaf height was monitored to assess plant establishment and growth. Investigations into plant establishment and growth demonstrated that Carex was most suitable. Carex achieved the highest maximum leaf height and was not affected by pests and disease unlike Schoenoplectus and Philydrum. Above ground biomass was cropped in May and August 2001, with biomass of cropped material measured on both occasions. Plant health and re-growth following cropping of above ground biomass in May and August 2001 demonstrated that cropping retarded regrowth of Schoenoplectus and Philydrum. Carex and Baumea recovered quickest following cropping, with Carex achieving leaf height prior to cropping within 6 months. Proportion of biomass contained above and below ground was measured by collecting biomass samples three times over 9 months and dividing into plant components (roots, rhizomes, leaves, flowers and stems). Investigations into the proportion of above and below ground components indicated that >80% of biomass is contained above ground. Therefore cropping above ground biomass would potentially remove a significant proportion of nutrient storage from the CW. The results indicated that the ideal time for cropping was in spring/summer when plants are flowering particularly for Philydrum, whose flowering stems comprised 40% of total plant biomass. Flowering stems of Philydrum could potentially have a commercial use as a cut flower. Nutrient content of the four species in each cell was measured for individual plant components when first planted and after three (summer) and six (autumn) months growth. This was combined with biomass data to quantify nutrient bioaccumulation (nitrogen and phosphorus) by the four species in each cell. In terms of ability to bioaccumulate nitrogen and phosphorus, measurements of nutrient content and storage indicated that all four species were suitable. Nutrient storage was highest for Baumea and Carex. However high nutrient content may make the macrophytes more susceptible to pest and disease attack as found in this study for Philydrum and Schoenoplectus. Nutrient storage was highest in Cell A (new 5mm gravel) as a result of higher biomass achieved in this cell. The cropping and nutrient storage experiments indicated that Carex was the most suitable species for use in SSF CWs. Carex achieved the highest nutrient storage and had the fastest regrowth following cropping. Organic carbon accumulation between gravel particles measured as the proportion of material lost at 500oC was determined for gravel samples collected from each section for all four cells at 10cm depth increments (0-10cm, 10-20cm and 20-30cm). Investigations into organic carbon accumulation within the gravel substrate showed that organic accumulation was higher in the planted sections particularly for cells that had previously been planted with Phragmites australis. Organic accumulation was highest in the top 20cm of the gravel, which can be attributed to litter fall and root material. The effect of gravel size on plant growth, biomass, root depth and organic accumulation was assessed throughout the study. Investigations indicated that gravel size did not appear to affect biomass, maximum root penetration, re-growth following cropping and organic accumulation. Water quality from the inlet and outlet of each cell was measured fortnightly over 12 months (May 2001 to May 2002). Water quantity (HLR) was measured weekly using tipping buckets located at the inlet and outlet of each cell. Water quality and quantity were combined to investigate the nutrient removal efficiency of the wetland. The Oxley wetland was highly effective in reduction of TSS (<2mg/L) and COD (<30mg/L). Principal TSS and COD removal mechanism was physical with the first gravel section acting as a filter removing the majority of particulate material. Average loading rates to the wetland were 7.1 kg/ha/d PO4-P, 14 kg/ha/d NH4-N and 5.4 kg/ha/d NOx-N. Average daily mass removal rates ranged from 7.3 kg/ha NH4-N in Cell D to 4.6 kg/ha in Cell C (i.e. 37%-22% removal efficiency respectively); 5.2 kg/ha NOx-N in Cell C to 1.3 kg/ha in Cell A (i.e. 75%-22% removal efficiency) and 0.8 kg/ha PO4-P in Cell A to 0.1 kg/ha in Cell C (i.e. 10%-1% removal efficiency). Removal efficiency was calculated on a loads basis. Insufficient retention times (2-3 days based on tracer study) and anaerobic conditions (<1mg/L) limited further nitrogen removal. Negligible phosphorus removal for all cells was attributed to short retention time and likelihood of phosphorus adsorption being close to capacity. Investigation into the proportion of nutrient removal attributed to plant uptake demonstrated that nutrient uptake and storage in plant biomass accounted for <12% TN and <5% TP. This research project has provided several useful outcomes that can assist in future guidelines for designing effective SSF CWs in the subtropics/tropics. Outcomes include the importance of maintaining an adequate water level during the initial establishment phase. Maximising effluent treatment by pre-treatment of wastewater prior to entering SSF CWs to enable ammonia to be converted to nitrate and ensuring adequate hydraulic retention time. Carex fascicularis was the most suitable species particularly where harvesting regimes are employed. Philydrum flowering stems could be used as a cut flower in the florist trade.
123

Migration of E. coli and solutes to tile drains via preferential and matrix flow

Moreno, Daniel 21 March 2002 (has links)
The extent of agricultural drainage has created concern for its potential undesirable effects on surface water quality. Land applications of liquid manure on tile drain fields have the potential to transport solutes and bacteria to the drains following precipitation or irrigation events and many times are directly sent to a surface water body, and have been documented as a source of contamination of surface waters. This study determined the potential for and magnitude of E. coli and solute migration to tile drains through the soil profile. Water from subsurface drains was analyzed for chemical and bacterial composition following tracer applications. Two sites were selected for the study to determine transport at large (field) and small (plot) scales. At the large-scale site, both tracers, bacteria (E. coli and Total Coliform) and Amino-G (a conservative tracer), were used to monitor the speed of transport from the surface to the tile drain following liquid manure applications, tracer applications and additionally precipitation events. The concentrations of E. coli were monitored every hour for 76 days during the spring. Both tracers, bacteria and Amino-G, were detected in the tile drainage shortly after precipitation events. The peak concentration of E. coli was observed to be 1.2 x 10⁶ CFU/l00mL. These elevated concentrations of E. coli might be attributed to the characteristics of the soil, high organic matter and well-structured clay soils. Both the rapid breakthrough of tracer to the tile drain and the peaks of tile water temperature during precipitation events provided evidence of macropore flow. Antecedent soil moisture and warmer temperatures appeared to provide ideal conditions for bacteria growth. The small-scale study site was selected for a more focused study. The purpose of this site was to quantify more accurately the percent mass of surface applied tracer that was transported to the tile drain, allowing mass balance calculations. Experiments were conducted during the summer to control the rate and total amount of irrigation. Amino-G readings were taken every 10 seconds for 125 hours of continuous irrigation. Tracer applications were conducted at runoff and non-runoff conditions. Both types of tracer applications had Amino-G breakthrough in less than 10 minutes after initiation of irrigation. Tracer applied at runoff rates resulted in 4 to 17 times more total tracer mass migrating to the tile drain than when applied at non-runoff rates. The total mass of Amino-G migrating to the tile drain during non-runoff conditions depended on the total volume of applied tracer, regardless of the tracer concentration. For an application of 5.6 mm at 12 mg/L, 5.7% of the total applied tracer migrated to the tile drain, whereas for an application of 1.9 mm at 27.7 mg/L only 2.8% of the total applied tracer migrated to the tile drain. Tile flow response to irrigation experiments appeared to be governed by soil moisture. Lysimeter samples were taken continuously every 4-8 hours until the 94th hour after tracer application. Tile water concentrations were consistently greater than concentrations found in the deeper suction lysimeters at corresponding times, providing further evidence of preferential flow. E. coli transported through the soil and into the drains were demonstrated to be event-driven by precipitation events and irrigation events. In addition, the characteristics of this type of soil - the high clay content, the well-defined structure, the high level of organic matter and rich biological activity has been known to enhance the preferential pathways and transport processes in the soil profile, resulting in rapid transport of surface applied solutes and effluents to tile drains. / Graduation date: 2003
124

Evaluation of the application uniformity of subsurface drip distribution systems

Weynand, Vance Leo 30 September 2004 (has links)
The goal of this research was to evaluate the application uniformity of subsurface drip distribution systems and the recovery of emitter flow rates. Emission volume in the field, and laboratory measured flow rates were determined for emitters from three locations. Additionally, the effects of lateral orientation with respect to slope on emitter plugging was evaluated. Two different emitters were tested to evaluate slope effects on emitter plugging (type Y and Z). The emitters were alternately spliced together and installed in an up and down orientation on slopes of 0, 1, 2 and 4% and along the contour on slopes of 1 and 2%. The emitters were covered with soil and underwent a simulated year of dosing cycles, and then flushed with a flushing velocity of 0.6 m/s. Initial flow rates for the two emitter types were 2.38 L/hr with a C.V. of 0.07. There was no significant difference in flow rates among slopes for type Y emitters, but there was a significant difference between the 1% and 2 % contour slopes for type Z emitters. Application uniformity of three different laterals at each site was evaluated. Sections of the lateral from the beginning, middle and end were excavated and emission volumes were recorded for each emitter. Application uniformity of laterals ranged from 48.69 to 9.49%, 83.55 to 72.60%, and 44.41 to 0% for sites A, B, and C, respectively. Mean emitter flow rate was 2.21, 2.24, and 2.56 L/hr for sites A, B, and C, respectively under laboratory conditions. Application uniformity under laboratory conditions ranged from 70.97 to 14.91%, 86.67 to 79.99%, and 85.04 to 0.00% for sites A, B, and C, respectively. A flushing velocity of 0.15 m/s with no chlorination, shock chlorination of 3400 mg/L and flushing velocity of 0.15 m/s, and shock chlorination of 3400 mg/L and flushing velocity of 0.6 m/s treatment regiments were applied to all laterals collected to assess emitter flow rate recovery to the nominal flow rate published by the manufacturer. All laterals showed an increase in the number of emitters within 10% of the published nominal flow rate.
125

Continuum Approach to Two- and Three-Phase Flow during Gas-Supersaturated Water Injection in Porous Media

Enouy, Robert 09 December 2010 (has links)
Degassing and in situ formation of a mobile gas phase takes place when an aqueous phase equilibrated with a gas at a pressure higher than the subsurface pressure is injected in water-saturated porous media. This process, which has been termed supersaturated water injection (SWI), is a novel and hitherto unexplored means of introducing a gas phase into the subsurface. Herein is a first macroscopic account of the SWI process on the basis of continuum scale simulations and column experiments with CO2 as the dissolved gas. A published empirical mass transfer correlation (Nambi and Powers, Water Resour Res, 2003) is found to adequately describe the non-equilibrium transfer of CO2 between the aqueous and gas phases. Remarkably, the dynamics of gas-water two-phase flow, observed in a series of SWI experiments in homogeneous columns packed with silica sand or glass beads, are accurately predicted by traditional two-phase flow theory which allows the corresponding gas phase relative permeability to be determined. A key consequence of the finding, that the displacement of the aqueous phase by gas is compact at the macroscopic scale, is consistent with pore scale simulations of repeated mobilization, fragmentation and coalescence of large gas clusters (i.e., large ganglion dynamics) driven entirely by mass transfer. The significance of this finding for the efficient delivery of a gas phase below the water table in relation to the alternative process of in-situ air sparging and the potential advantages of SWI are discussed. SWI has been shown to mobilize a previously immobile oil phase in the subsurface of 3-phase systems (oil, water and gas). A macroscopic account of the SWI process is given on the basis of continuum-scale simulations and column experiments using CO2 as the dissolved gas and kerosene as the trapped oil phase. Experimental observations show that the presence of oil ganglia in the subsurface alters gas phase mobility from 2-phase predictions. A corresponding 3-phase gas relative permeability function is determined, whereas a published 3-phase relative permeability correlation (Stone, Journal of Cana Petro Tech, 1973) is found to be inadequate for describing oil phase flow during SWI. A function to predict oil phase relative permeability is developed for use during SWI at high aqueous phase saturations with a disconnected oil phase and quasi-disconnected gas phase. Remarkably, the dynamics of gas-water-oil 3-phase flow, observed in a series of SWI experiments in homogeneous columns packed with silica sand or glass beads, are accurately predicted by traditional continuum-scale flow theory. The developed relative permeability function is compared to Stone’s Method and shown to approximate it in all regions while accurately describing oil flow during SWI. A published validation of Stone’s Method (Fayers and Matthews, Soc of Petro Eng Journal, 1984) is cited to validate this approximation of Stone’s Method.
126

Development of a Parallel Computational Framework to Solve Flow and Transport in Integrated Surface-Subsurface Hydrologic Systems

Hwang, Hyoun-Tae January 2012 (has links)
HydroGeoSphere (HGS) is a 3D control-volume finite element hydrologic model describing fully-integrated surface-subsurface water flow and solute and thermal energy transport. Because the model solves tightly-coupled highly-nonlinear partial differential equations, often applied at regional and continental scales (for example, to analyze the impact of climate change on water resources), high performance computing (HPC) is essential. The target parallelization includes the composition of the Jacobian matrix for the iterative linearization method and the sparse-matrix solver, preconditioned BiCGSTAB. The Jacobian matrix assembly is parallelized by using a static scheduling scheme with taking account into data racing conditions, which may occur during the matrix construction. The parallelization of the solver is achieved by partitioning the domain into equal-size sub-domains, with an efficient reordering scheme. The computational flow of the BiCGSTAB solver is also modified to reduce the parallelization overhead and to be suitable for parallel architectures. The parallelized model is tested on several benchmark cases that include linear and nonlinear problems involving various domain sizes and degrees of hydrologic complexity. The performance is evaluated in terms of computational robustness and efficiency, using standard scaling performance measures. Simulation profiling results indicate that the efficiency becomes higher for three situations: 1) with an increasing number of nodes/elements in the mesh because the work load per CPU decreases with increasing the number of nodes, which reduces the relative portion of parallel overhead in total computing time., 2) for increasingly nonlinear transient simulations because this makes the coefficient matrix diagonal dominance, and 3) with domains of irregular geometry that increases condition number. These characteristics are promising for the large-scale analysis of water resource problems that involve integrated surface-subsurface flow regimes. Large-scale real-world simulations illustrate the importance of node reordering, which is associated with the process of the domain partitioning. With node reordering, super-scalarable parallel speedup was obtained when compared to a serial simulation performed with natural node ordering. The results indicate that the number of iterations increases as the number of threads increases due to the increased number of elements in the off-diagonal blocks in the coefficient matrix. In terms of the privatization scheme, the parallel efficiency with privatization was higher than that with the shared scheme for most of simulations performed.
127

The Treatment of Swine Wastewater by Horizontal Biofilter and Subsurface Constructed Wetland

Hsieh, Hsiao-Yu 09 August 2011 (has links)
Swine wastewater is one of the major pollutions in Taiwan. The abundant nutrition and organic matters in it may lead eutrophication of water body. Meanwhile, the low dissolved oxygen level and high suspended solids concentration may also make it more difficult to handle the wastewater treatment. At present facility of swine wastewater in Taiwan is the three-process treatment which includes the solid-liquid separation, anaerobic digestion, and activated sludge system. Even though the three-process treatment is widely used, the efficiency of sediment and filter effectively to remove the nutrition, e.g., ammonia and phosphate is still in question. On the other hand, the activated sludge system is a difficult technique that the swine farmers can¡¦t easily to operate. Based on these reasons, an efficient swine wastewater treatment process should be established. In this study, we replace the activated sludge system in three-process treatment with the horizontal biofilter (HBF) and subsurface system constructed wetland (SFSCW) to assess the practicability of improving the traditional process. HBF is a fix-biofilm system which is superior to the suspended growth of activated sludge system by its simple operation and no need to return the sludge from the final clarifier. Porosity in the gravel of SFSCW and the root zone of Canna indica can also help to remove the nutrients from the outflow of HBF. The tested HRT (hydraulic retention time) has been controlled at about 30 hours and results show that SS, BOD and COD removal efficiencies as 84.07%, 86.48%, and 68.45%, respectively. HBF and SFSCW provided approximate 70~80% and 10~20% removal efficiencies, respectively. This design of combining HBF and SFSCW system has high potential to treat the swine wastewater, and adding the backwash unit may further facilitate the operation in the future.
128

Ground penetrating radar response to thin layers: Examples from Waites Island, South Carolina

Guha, Swagata 01 June 2005 (has links)
Thin layers (layers that are not resolvable in terms of GPR wavelengths) are very common in sedimentary deposits. To better understand ground penetrating radar (GPR) wave behavior in sequences of thin layers with contrasting electromagnetic parameters, 1D FDTD simulations are run for simple layer distributions. Laminated (mm-scale) sequences can produce reflected energy with 10-20% of the amplitude of reflections from equivalent isolated contacts. Amplitude spectra from laminae packages are shifted toward higher frequencies. Such spectral shifts in radar profiles may potentially be used as indicators of fine-scale laminations. A comparative study of GPR records and models generated from core data from Waites Island, South Carolina, a Holocene barrier island, suggest that magnetite-rich laminae contribute significantly to radar profiles, but that some features in the radar traces cannot be associated with lithologic changes seen in vibracores.
129

The effects of confining minibasin topography on turbidity current dynamics and deposit architecture

Maharaj, Vishal Timal 25 February 2013 (has links)
This dissertation advances our understanding of how turbidity currents interact with three-dimensional (3-D) minibasin topography and the resulting deposits that form. Conceptual Gulf of Mexico-centric models of minibasin fill development have become the foundation for exploring and identifying strategic deep-water hydrocarbon reserves on continental slopes around the world. Despite the abundance of subsurface data, significant questions remain about the 3-D physical processes through which minibasins fill and the relationship between these processes and the topography of the basin. To overcome this problem, I utilize techniques in physical laboratory modeling to query established models of the role that turbidity currents play in minibasin fill development, and observe the relationships between fill from the Lobster minibasin located in a proximal continental slope position in the Gulf of Mexico and from the Safi Haute Mer (SHM) minibasin located in the distal continental slope of offshore western Morocco. First, existing published literature are reviewed and assessed for the known state of minibasin development and fill processes, and the strengths and weaknesses of our current knowledge base. Second, results are presented from two series of experiments that document the interaction between steady, depletive turbidity currents and 3-D minibasin topography. Experimental results suggest that turbidity currents produce deposits that are more likely to drape pre-flow topography than pond within it. Turbidity current velocity data show a strong 3-D physical component in minibasin fill sedimentation that also influences extra-basinal sedimentation patterns. Details of these results provide insight into processes that have not been previously considered in published conceptual models of minibasin fill. Third, a comparison of the two subsurface datasets show that the types and abundance of architectural elements vary depending on the location of the minibasin on the continental slope (i.e. proximal vs. distal), and suggests key differences in the processes responsible for their infilling. Finally, a comparison of experimental results to preserved deposit architectures in the Lobster and SHM datasets suggest a more complex relationship of process-driven sedimentation than that derived primarily from suspension fallout. This improved understanding of minibasin fill is applicable to industry for increasing confidence in subsurface interpretations and reducing risk while exploring for quality reservoirs in deepwater regions. / text
130

Organic Carbon Reduction in Seawater Reverse Osmosis (SWRO) Plants, Jeddah, Saudi Arabia

Alshahri, Abdullah 12 1900 (has links)
Desalination is considered to be a major source of usable water in the Middle East, especially the Gulf countries which lack fresh water resources. A key and sometimes the only solution to produce high quality water in these countries is through the use of seawater reverse osmosis (SWRO) desalination technology. Membrane fouling is an economic and operational defect that impacts the performance of SWRO desalination technology. To limit this fouling phenomenon, it is important to implement the appropriate type of intake and pre-treatment system design. In this study, two types of systems were investigated, a vertical well system and a surface-water intake at a 9m depth. The purpose of this investigation is to study the impact of the different intake systems and pre-treatment stages in minimizing the concentrations of algae, bacteria, natural organic matter (NOM) and transparent exopolymer particles (TEP), in the feed water prior to pre-treatment, through the pre-treatment stages, and in the product water and concentrate. Water samples were collected from the surface seawater, the intakes (wells for site A, 9 m depth open ocean intake at site B), after the media filter, after the cartridge filter, and from the permeate and reject streams. The measured parameters included physical parameters, algae, bacteria, total organic carbon (TOC), fractions of dissolved NOM, particulate and colloidal TEP. The results of this study prove that the natural filtration and biological treatment of the seawater which occur in the aquifer matrix are very effective in improving the raw water quality to a significant degree. The results demonstrated that algae and biopolymers were 100% removed, the bacterial concentrations were significantly removed and roughly 50% or greater of TOC concentrations was eliminated by the aquifer matrix at site A. The aquifer feeding the vertical wells reduced TEP concentrations, but to differing degree. There is a slight decrease in the concentrations of, algae, bacteria, TOC, NOM, and TEP in the feed water at 9 m depth compared to the surface seawater at site B. The pre-treatment was of significant effectiveness and the improvements in reducing the membrane fouling potential were quite high and strong at this site. Investigation of the permeate stream showed some breakthrough of bacteria which is of concern because it may indicate a problem within the membrane system (e.g., broken seal and perforation). The aquifer feeding the wells in the subsurface system plays a main role in the improvement of water quality, so the pre-treatment seems less effective in site A plant. This proves that the subsurface intake is better than open ocean intake in terms of providing better raw water quality and ultimately reducing membrane biofouling.

Page generated in 0.0418 seconds