• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 9
  • 2
  • Tagged with
  • 32
  • 32
  • 15
  • 14
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Le signal monogène couleur : théorie et applications / The Color Monogenic Signal : theory and applications

Demarcq, Guillaume 10 December 2010 (has links)
Dans cette thèse, une nouvelle représentation des images couleur basée sur une généralisation du signal analytique est introduite. En utilisant l'analogie entre les conditions de Cauchy-Riemann, qui définissent le caractère holomorphe d'une fonction, et l'équation de Dirac dans l'algèbre de Clifford R_{5,0}, un système d'équations dont la solution est le signal monogène couleur est obtenu. Ce signal est notamment basé sur des noyaux de Riesz ainsi que de Poisson 2D, et une représentation polaire, basée sur un produit géométrique, peut lui être associée. Les applications envisagées reposent majoritairement sur cette représentation polaire et sur les informations de couleur et de structures locales s'y rattachant. Des problématiques liées au flot optique couleur, à la segmentation couleur multi-échelle, au suivi d'objets couleur et à la détection de points d'intérêt sont abordées. En ce qui concerne le flot optique, nous nous intéressons à l'extraction du mouvement d'objets d'une certaine couleur en remplaçant la contrainte de conservation de l'intensité par une contrainte de conservation d'angles. Pour la segmentation, une méthode de détection de contours basée sur de la géométrie différentielle et plus particulièrement sur la première forme fondamentale d'une surface, est proposée afin de déterminer les contours d'objets d'une couleur choisie. Pour le suivi d'objets, nous définissons un nouveau critère de similarité utilisant le produit géométrique que nous insérons dans un filtrage particulaire. Enfin, nous resituons la définition du détecteur de Harris dans le cadre de la géométrie différentielle en faisant le lien entre ce dernier et une version "relaxée" du discriminant du polynôme caractéristique de la première forme fondamentale. Ensuite nous proposons une nouvelle version multi-échelle de ce détecteur en traitant le paramètre d'échelle comme une variable d'une variété de dimension 3. / In this thesis, a novel framework for color image processing is introduced based on the generalization of the analytic signal. Using the analogy between the Cauchy-Riemann conditions and the Dirac equation in the Clifford algebra R_{5,0}, a system of equations which leads to the color monogenic signal is obtained. This latter is based on the Riesz and 2D Poisson kernels, and a polar representation based on the geometric product can be associated to this signal. Some applications using color and local structure information provided by the polar representation are presented. Namely, color optical flow, color segmentation, color object tracking and points of interest are developed. Extraction of optical flow in a chosen color is obtained by replacing the brightness constancy assumption by an angle constancy. Edge detection is based on the first fundamental form from differential geometry in order to segment object in a predefined color. Object tracking application uses a new similarity criterion defined by geometric product of block of vectors. This latter is viewed as the likelyhood measure of a particle filter. Last part of the thesis is devoted to the definition of the Harris detector in the framework of differential geometry and a link between this definition and a relaxed version of the characteristic polynomial discriminant of the first fundamental form is given. In this context, a new scale-space detector is provided as the result of handling the scale parameter as a variable in a 3-manifold.
22

Real-time multi-target tracking : a study on color-texture covariance matrices and descriptor/operator switching / Suivi temps-réel : matrices de covariance couleur-texture et commutation automatique de descripteur/opérateur

Romero Mier y Teran, Andrés 03 December 2013 (has links)
Ces technologies ont poussé les chercheurs à imaginer la possibilité d'automatiser et émuler les capacités de perception visuels des animaux et de l'homme lui-même. Depuis quelques décennies le domaine de la vision par ordinateur a essayé plusieurs approches et une vaste gamma d'applications a été développée avec un succès partielle: la recherche des images basé sur leur contenu, la exploration de donnés à partir des séquences vidéo, la ré-identification des objets par des robots, etc. Quelques applications sont déjà sur le marché et jouissent déjà d'un certain succès commercial.La reconnaissance visuelle c'est un problème étroitement lié à l'apprentissage de catégories visuelles à partir d'un ensemble limité d'instances. Typiquement deux approches sont utilisées pour résoudre ce problème: l'apprentissage des catégories génériques et la ré-identification d'instances d'un objet un particulière. Dans le dernier cas il s'agit de reconnaître un objet ou personne en particulière. D'autre part, la reconnaissance générique s'agit de retrouver tous les instances d'objets qui appartiennent à la même catégorie conceptuel: tous les voitures, les piétons, oiseaux, etc.Cette thèse propose un système de vision par ordinateur capable de détecter et suivre plusieurs objets dans les séquences vidéo. L'algorithme pour la recherche de correspondances proposé se base sur les matrices de covariance obtenues à partir d'un ensemble de propriétés des images (couleur et texture principalement). Son principal avantage c'est qu'il utilise un descripteur qui permet l'introduction des sources d'information très hétérogènes pour représenter les cibles. Cette représentation est efficace pour le suivi d'objets et son ré-identification.Quatre contributions sont introduites dans cette thèse.Tout d'abord cette thèse s'intéresse à l'invariance des algorithmes de suivi face aux changements du contexte. Nous proposons ici une méthodologie pour mesurer l’importance de l'information couleur en fonction de ses niveaux d’illumination et saturation. Puis, une deuxième partie se consacre à l'étude de différentes méthodes de suivi, ses avantages et limitations en fonction du type d'objet à suivre (rigide ou non rigide par exemple) et du contexte (caméra statique ou mobile). Le méthode que nous proposons s'adapte automatiquement et utilise un mécanisme de commutation entre différents méthodes de suivi qui considère ses qualités complémentaires. Notre algorithme se base sur un modèle de covariance qui fusionne les informations couleur-texture et le flot optique (KLT) modifié pour le rendre plus robuste et adaptable face aux changements d’illumination. Une deuxième approche se appuie sur l'analyse des différents espaces et invariants couleur à fin d'obtenir un descripteur qui garde un bon équilibre entre pouvoir discriminant et robustesse face aux changements d'illumination.Une troisième contribution porte sur le problème de suivi multi-cibles ou plusieurs difficultés apparaissent : la confusion d'identités, les occultations, la fusion et division des trajectoires-détections, etc.La dernière partie se consacre à la vitesse des algorithmes à fin de fournir une solution rapide et utilisable dans les applications embarquées. Cette thèse propose une série d'optimisations pour accélérer la mise en correspondance à l'aide de matrices de covariance. Transformations de mise en page de données, la vectorisation des calculs (à l'aide d'instructions SIMD) et certaines transformations de boucle permettent l'exécution en temps réel de l'algorithme non seulement sur les grands processeurs classiques de Intel, mais aussi sur les plateformes embarquées (ARM Cortex A9 et Intel U9300). / Visual recognition is the problem of learning visual categories from a limited set of samples and identifying new instances of those categories, the problem is often separated into two types: the specific case and the generic category case. In the specific case the objective is to identify instances of a particular object, place or person. Whereas in the generic category case we seek to recognize different instances that belong to the same conceptual class: cars, pedestrians, road signs and mugs. Specific object recognition works by matching and geometric verification. In contrast, generic object categorization often includes a statistical model of their appearance and/or shape.This thesis proposes a computer vision system for detecting and tracking multiple targets in videos. A preliminary work of this thesis consists on the adaptation of color according to lighting variations and relevance of the color. Then, literature shows a wide variety of tracking methods, which have both advantages and limitations, depending on the object to track and the context. Here, a deterministic method is developed to automatically adapt the tracking method to the context through the cooperation of two complementary techniques. A first proposition combines covariance matching for modeling characteristics texture-color information with optical flow (KLT) of a set of points uniformly distributed on the object . A second technique associates covariance and Mean-Shift. In both cases, the cooperation allows a good robustness of the tracking whatever the nature of the target, while reducing the global execution times .The second contribution is the definition of descriptors both discriminative and compact to be included in the target representation. To improve the ability of visual recognition of descriptors two approaches are proposed. The first is an adaptation operators (LBP to Local Binary Patterns ) for inclusion in the covariance matrices . This method is called ELBCM for Enhanced Local Binary Covariance Matrices . The second approach is based on the analysis of different spaces and color invariants to obtain a descriptor which is discriminating and robust to illumination changes.The third contribution addresses the problem of multi-target tracking, the difficulties of which are the matching ambiguities, the occlusions, the merging and division of trajectories.Finally to speed algorithms and provide a usable quick solution in embedded applications this thesis proposes a series of optimizations to accelerate the matching using covariance matrices. Data layout transformations, vectorizing the calculations (using SIMD instructions) and some loop transformations had made possible the real-time execution of the algorithm not only on Intel classic but also on embedded platforms (ARM Cortex A9 and Intel U9300).
23

Suivi d'objets d'intérêt dans une séquence d'images : des points saillants aux mesures statistiques

Vincent, Garcia 11 December 2008 (has links) (PDF)
Le problème du suivi d'objets dans une vidéo se pose dans des domaines tels que la vision par ordinateur (vidéo-surveillance par exemple) et la post-production télévisuelle et cinématographique (effets spéciaux). Il se décline en deux variantes principales : le suivi d'une région d'intérêt, qui désigne un suivi grossier d'objet, et la segmentation spatio-temporelle, qui correspond à un suivi précis des contours de l'objet d'intérêt. Dans les deux cas, la région ou l'objet d'intérêt doivent avoir été préalablement détourés sur la première, et éventuellement la dernière, image de la séquence vidéo. Nous proposons dans cette thèse une méthode pour chacun de ces types de suivi ainsi qu'une implémentation rapide tirant partie du Graphics Processing Unit (GPU) d'une méthode de suivi de régions d'intérêt développée par ailleurs.<br />La première méthode repose sur l'analyse de trajectoires temporelles de points saillants et réalise un suivi de régions d'intérêt. Des points saillants (typiquement des lieux de forte courbure des lignes isointensité) sont détectés dans toutes les images de la séquence. Les trajectoires sont construites en liant les points des images successives dont les voisinages sont cohérents. Notre contribution réside premièrement dans l'analyse des trajectoires sur un groupe d'images, ce qui améliore la qualité d'estimation du mouvement. De plus, nous utilisons une pondération spatio-temporelle pour chaque trajectoire qui permet d'ajouter une contrainte temporelle sur le mouvement tout en prenant en compte les déformations géométriques locales de l'objet ignorées par un modèle de mouvement global.<br />La seconde méthode réalise une segmentation spatio-temporelle. Elle repose sur l'estimation du mouvement du contour de l'objet en s'appuyant sur l'information contenue dans une couronne qui s'étend de part et d'autre de ce contour. Cette couronne nous renseigne sur le contraste entre le fond et l'objet dans un contexte local. C'est là notre première contribution. De plus, la mise en correspondance par une mesure de similarité statistique, à savoir l'entropie du résiduel, d'une portion de la couronne et d'une zone de l'image suivante dans la séquence permet d'améliorer le suivi tout en facilitant le choix de la taille optimale de la couronne.<br />Enfin, nous proposons une implémentation rapide d'une méthode de suivi de régions d'intérêt existante. Cette méthode repose sur l'utilisation d'une mesure de similarité statistique : la divergence de Kullback-Leibler. Cette divergence peut être estimée dans un espace de haute dimension à l'aide de multiples calculs de distances au k-ème plus proche voisin dans cet espace. Ces calculs étant très coûteux, nous proposons une implémentation parallèle sur GPU (grâce à l'interface logiciel CUDA de NVIDIA) de la recherche exhaustive des k plus proches voisins. Nous montrons que cette implémentation permet d'accélérer le suivi des objets, jusqu'à un facteur 15 par rapport à une implémentation de cette recherche nécessitant au préalable une structuration des données.
24

Alignement paramétrique d'images : proposition d'un formalisme unifié et prise en compte du bruit pour le suivi d'objets

Authesserre, Jean-Baptiste 02 December 2010 (has links) (PDF)
L'alignement d'images paramétrique a de nombreuses applications pour la réalité augmentée, la compression vidéo ou encore le suivi d'objets. Dans cette thèse, nous nous intéressons notamment aux techniques de recalage d'images (template matching) reposant sur l'optimisation locale d'une fonctionnelle d'erreur. Ces approches ont conduit ces dernières années à de nombreux algorithmes efficaces pour le suivi d'objets. Cependant, les performances de ces algorithmes ont été peu étudiées lorsque les images sont dégradées par un bruit important comme c'est le cas, par exemple, pour des captures réalisées dans des conditions de faible luminosité. Dans cette thèse, nous proposons un nouveau formalisme, appelé formalisme bidirectionnel, qui unifie plusieurs approches de l'état de l'art. Ce formalisme est utilisé dans un premier temps pour porter un éclairage nouveau sur un grand nombre d'approches de la littérature et en particulier sur l'algorithme ESM (Efficient Second-order Minimization). Nous proposons ensuite une étude théorique approfondie de l'influence du bruit sur le processus d'alignement. Cette étude conduit à la définition de deux nouvelles familles d'algorithmes, les approches ACL (Asymmetric Composition on Lie Groups) et BCL (Bidirectional Composition on Lie Groups) qui permettent d'améliorer les performances en présence de niveaux de bruit asymétriques (Rapport Signal sur Bruit différent dans les images). L'ensemble des approches introduites sont validées sur des données synthétiques et sur des données réelles capturées dans des conditions de faible luminosité.
25

Etude et modélisation du comportement des gouttelettes de produits phytosanitaires sur les feuilles de vignes par imagerie ultra-rapide et analyse de texture

Decourselle, Thomas 23 October 2013 (has links) (PDF)
Dans le contexte actuel de diminution des pollutions d'origine agricole, laréduction des apports d'intrants devient un enjeu primordial. En France, laviticulture est l'activité qui possède le taux le plus important de traitementsphytosanitaires par unité de surface. Elle représente, à elle seule, 20% de laconsommation annuelle de pesticides. Par conséquent, il est nécessaire d'étudierle devenir des pesticides appliqués afin de réduire les quantités perduesdans l'environnement. Dans le cadre de la réduction d'apport de produitsphytosanitaires dans les vignes, de nombreux travaux ont été effectués sur lamodélisation du comportement d'un spray de gouttelettes et sa répartitionau niveau de la parcelle et de l'air environnant. Cependant, il est égalementimportant de s'intéresser au comportement de la gouttelette directement auniveau de la feuille. Les progrès dans le domaine de l'imagerie et la diminutiondu coût des systèmes ont rendus ces systèmes beaucoup plus attractifs.Le travail de cette thèse consiste en la mise en place d'un système d'imagerierapide qui permet l'observation du comportement à l'impact de gouttelettesrépondant aux conditions de pulvérisation. Les caractéristiques ainsi que lecomportement associé de chaque gouttelette sont extraits grâce à une méthodede suivi d'objets. Une analyse statistique basée sur un nombre représentatifde résultats permet ensuite d'évaluer de manière robuste le devenir d'unegoutte en fonction de ses caractéristiques. Parallèlement, un paramètre décrivantl'état de surface de la feuille est également étudié grâce à l'imagerie : larugosité qui joue un rôle prédominant dans la compréhension des mécanismesd'adhésion
26

Détection, suivi et ré-identification de personnes à travers un réseau de caméra vidéo

Souded, Malik 20 December 2013 (has links) (PDF)
Cette thèse CIFRE est effectuée dans un contexte industriel et présente un framework complet pour la détection, le suivi mono-caméra et de la ré-identification de personnes dans le contexte multi-caméras. Les performances élevés et le traitement en temps réel sont les deux contraintes critiques ayant guidé ce travail. La détection de personnes vise à localiser/délimiter les gens dans les séquences vidéo. Le détecteur proposé est basé sur une cascade de classifieurs de type LogitBoost appliqué sur des descripteurs de covariances. Une approche existante a fortement été optimisée, la rendant applicable en temps réel et fournissant de meilleures performances. La méthode d'optimisation est généralisable à d'autres types de détecteurs d'objets. Le suivi mono-caméra vise à fournir un ensemble d'images de chaque personne observée par chaque caméra afin d'extraire sa signature visuelle, ainsi qu'à fournir certaines informations du monde réel pour l'amélioration de la ré-identification. Ceci est réalisé par le suivi de points SIFT à l'aide d'une filtre à particules, ainsi qu'une méthode d'association de données qui infère le suivi des objets et qui gère la majorité des cas de figures possible, notamment les occultations. Enfin, la ré-identification de personnes est réalisée avec une approche basée sur l'apparence globale en améliorant grandement une approche existante, obtenant de meilleures performances tout en étabt applicable en temps réel. Une partie "conscience du contexte" est introduite afin de gérer le changement d'orientation des personnes, améliorant les performances dans le cas d'applications réelles.
27

Détection, suivi et ré-identification de personnes à travers un réseau de caméra vidéo / People detection, tracking and re-identification through a video camera network

Souded, Malik 20 December 2013 (has links)
Cette thèse CIFRE est effectuée dans un contexte industriel et présente un framework complet pour la détection, le suivi mono-caméra et de la ré-identification de personnes dans le contexte multi-caméras. Les performances élevés et le traitement en temps réel sont les deux contraintes critiques ayant guidé ce travail. La détection de personnes vise à localiser/délimiter les gens dans les séquences vidéo. Le détecteur proposé est basé sur une cascade de classifieurs de type LogitBoost appliqué sur des descripteurs de covariances. Une approche existante a fortement été optimisée, la rendant applicable en temps réel et fournissant de meilleures performances. La méthode d'optimisation est généralisable à d'autres types de détecteurs d'objets. Le suivi mono-caméra vise à fournir un ensemble d'images de chaque personne observée par chaque caméra afin d'extraire sa signature visuelle, ainsi qu'à fournir certaines informations du monde réel pour l'amélioration de la ré-identification. Ceci est réalisé par le suivi de points SIFT à l'aide d'une filtre à particules, ainsi qu'une méthode d'association de données qui infère le suivi des objets et qui gère la majorité des cas de figures possible, notamment les occultations. Enfin, la ré-identification de personnes est réalisée avec une approche basée sur l'apparence globale en améliorant grandement une approche existante, obtenant de meilleures performances tout en étabt applicable en temps réel. Une partie "conscience du contexte" est introduite afin de gérer le changement d'orientation des personnes, améliorant les performances dans le cas d'applications réelles. / This thesis is performed in industrial context and presents a whole framework for people detection and tracking in a camera network. It addresses the main process steps: people detection, people tracking in mono-camera context, and people re-identification in multi-camera context. High performances and real-time processing are considered as strong constraints. People detection aims to localise and delimits people in video sequences. The proposed people detection is performed using a cascade of classifiers trained using LogitBoost algorithm on region covariance descriptors. A state of the art approach is strongly optimized to process in real time and to provide better detection performances. The optimization scheme is generalizable to many other kind of detectors where all possible weak classifiers cannot be reasonably tested. People tracking in mono-camera context aims to provide a set of reliable images of every observed person by each camera, to extract his visual signature, and it provides some useful real world information for re-identification purpose. It is achieved by tracking SIFT features using a specific particle filter in addition to a data association framework which infer object tracking from SIFT points one, and which deals with most of possible cases, especially occlusions. Finally, people re-identification is performed using an appearance based approach by improving a state of the art approach, providing better performances while keeping the real-time processing advantage. A context-aware part is introduced to robustify the visual signature against people orientations, ensuring better re-identification performances in real application case.
28

Graph mining for object tracking in videos / Fouille de graphes pour le suivi d’objets dans les vidéos

Diot, Fabien 03 June 2014 (has links)
Détecter et suivre les objets principaux d’une vidéo est une étape nécessaire en vue d’en décrire le contenu pour, par exemple, permettre une indexation judicieuse des données multimédia par les moteurs de recherche. Les techniques de suivi d’objets actuelles souffrent de défauts majeurs. En effet, soit elles nécessitent que l’utilisateur désigne la cible a suivre, soit il est nécessaire d’utiliser un classifieur pré-entraîné à reconnaitre une classe spécifique d’objets, comme des humains ou des voitures. Puisque ces méthodes requièrent l’intervention de l’utilisateur ou une connaissance a priori du contenu traité, elles ne sont pas suffisamment génériques pour être appliquées aux vidéos amateurs telles qu’on peut en trouver sur YouTube. Pour résoudre ce problème, nous partons de l’hypothèse que, dans le cas de vidéos dont l’arrière-plan n’est pas fixe, celui-ci apparait moins souvent que les objets intéressants. De plus, dans une vidéo, la topologie des différents éléments visuels composant un objet est supposée consistante d’une image a l’autre. Nous représentons chaque image par un graphe plan modélisant sa topologie. Ensuite, nous recherchons des motifs apparaissant fréquemment dans la base de données de graphes plans ainsi créée pour représenter chaque vidéo. Cette approche nous permet de détecter et suivre les objets principaux d’une vidéo de manière non supervisée en nous basant uniquement sur la fréquence des motifs. Nos contributions sont donc réparties entre les domaines de la fouille de graphes et du suivi d’objets. Dans le premier domaine, notre première contribution est de présenter un algorithme de fouille de graphes plans efficace, appelé PLAGRAM. Cet algorithme exploite la planarité des graphes et une nouvelle stratégie d’extension des motifs. Nous introduisons ensuite des contraintes spatio-temporelles au processus de fouille afin d’exploiter le fait que, dans une vidéo, les objets se déplacent peu d’une image a l’autre. Ainsi, nous contraignons les occurrences d’un même motif a être proches dans l’espace et dans le temps en limitant le nombre d’images et la distance spatiale les séparant. Nous présentons deux nouveaux algorithmes, DYPLAGRAM qui utilise la contrainte temporelle pour limiter le nombre de motifs extraits, et DYPLAGRAM_ST qui extrait efficacement des motifs spatio-temporels fréquents depuis les bases de données représentant les vidéos. Dans le domaine du suivi d’objets, nos contributions consistent en deux approches utilisant les motifs spatio-temporels pour suivre les objets principaux dans les vidéos. La première est basée sur une recherche du chemin de poids minimum dans un graphe connectant les motifs spatio-temporels tandis que l’autre est basée sur une méthode de clustering permettant de regrouper les motifs pour suivre les objets plus longtemps. Nous présentons aussi deux applications industrielles de notre méthode / Detecting and following the main objects of a video is necessary to describe its content in order to, for example, allow for a relevant indexation of the multimedia content by the search engines. Current object tracking approaches either require the user to select the targets to follow, or rely on pre-trained classifiers to detect particular classes of objects such as pedestrians or car for example. Since those methods rely on user intervention or prior knowledge of the content to process, they cannot be applied automatically on amateur videos such as the ones found on YouTube. To solve this problem, we build upon the hypothesis that, in videos with a moving background, the main objects should appear more frequently than the background. Moreover, in a video, the topology of the visual elements composing an object is supposed consistent from one frame to another. We represent each image of the videos with plane graphs modeling their topology. Then, we search for substructures appearing frequently in the database of plane graphs thus created to represent each video. Our contributions cover both fields of graph mining and object tracking. In the first field, our first contribution is to present an efficient plane graph mining algorithm, named PLAGRAM. This algorithm exploits the planarity of the graphs and a new strategy to extend the patterns. The next contributions consist in the introduction of spatio-temporal constraints into the mining process to exploit the fact that, in a video, the motion of objects is small from on frame to another. Thus, we constrain the occurrences of a same pattern to be close in space and time by limiting the number of frames and the spatial distance separating them. We present two new algorithms, DYPLAGRAM which makes use of the temporal constraint to limit the number of extracted patterns, and DYPLAGRAM_ST which efficiently mines frequent spatio-temporal patterns from the datasets representing the videos. In the field of object tracking, our contributions consist in two approaches using the spatio-temporal patterns to track the main objects in videos. The first one is based on a search of the shortest path in a graph connecting the spatio-temporal patterns, while the second one uses a clustering approach to regroup them in order to follow the objects for a longer period of time. We also present two industrial applications of our method
29

Alignement paramétrique d’images : proposition d’un formalisme unifié et prise en compte du bruit pour le suivi d’objets

Authesserre, Jean-baptiste 02 December 2010 (has links)
L’alignement d’images paramétrique a de nombreuses applications pour la réalité augmentée, la compression vidéo ou encore le suivi d’objets. Dans cette thèse, nous nous intéressons notamment aux techniques de recalage d’images (template matching) reposant sur l’optimisation locale d’une fonctionnelle d’erreur. Ces approches ont conduit ces dernières années à de nombreux algorithmes efficaces pour le suivi d’objets. Cependant, les performances de ces algorithmes ont été peu étudiées lorsque les images sont dégradées par un bruit important comme c’est le cas, par exemple, pour des captures réalisées dans des conditions de faible luminosité. Dans cette thèse, nous proposons un nouveau formalisme, appelé formalisme bidirectionnel, qui unifie plusieurs approches de l’état de l’art. Ce formalisme est utilisé dans un premier temps pour porter un éclairage nouveau sur un grand nombre d’approches de la littérature et en particulier sur l’algorithme ESM (Efficient Second-order Minimization). Nous proposons ensuite une étude théorique approfondie de l’influence du bruit sur le processus d’alignement. Cette étude conduit à la définition de deux nouvelles familles d’algorithmes, les approches ACL (Asymmetric Composition on Lie Groups) et BCL (Bidirectional Composition on Lie Groups) qui permettent d’améliorer les performances en présence de niveaux de bruit asymétriques (Rapport Signal sur Bruit différent dans les images). L’ensemble des approches introduites sont validées sur des données synthétiques et sur des données réelles capturées dans des conditions de faible luminosité. / Parametric image alignment is a fundamental task of many vision applications such as object tracking, image mosaicking, video compression and augmented reality. To recover the motion parameters, direct image alignment works by optimizing a pixel-based difference measure between a moving image and a fixed-image called template. In the last decade, many efficient algorithms have been proposed for parametric object tracking. However, those approaches have not been evaluated for aligning images of low SNR (Signal to Noise ratio) such as images captured in low-light conditions. In this thesis, we propose a new formulation of image alignment called Bidirectional Framework for unifying existing state of the art algorithms. First, this framework allows us to produce new insights on existing approaches and in particular on the ESM (Efficient Second-order Minimization) algorithm. Subsequently, we provide a theoretical analysis of image noise on the alignment process. This yields the definition of two new approaches : the ACL (Asymmetric Composition on Lie Groups) algorithm and the BCL (Bidirectional Composition on Lie Groups) algorithm, which outperform existing approaches in presence of images of different SNR. Finally, experiments on synthetic and real images captured under low-light conditions allow to evaluate the new and existing approaches under various noise conditions.
30

Géométrie stochastique pour la détection et le suivi d'objets multiples dans des séquences d'images haute résolution de télédétection / Stochastic geometry for automatic multiple object detection and tracking in remotely sensed high resolution image sequences

Crăciun, Paula 25 November 2015 (has links)
Dans cette thèse, nous combinons les outils de la théorie des probabilités et de la géométrie stochastique pour proposer de nouvelles solutions au problème de la détection et le suivi d'objets multiples dans des séquences d'images haute résolution. Nous créons un cadre fondé sur des modèles de processus ponctuels marqués spatio-temporels pour détecter et suivre conjointement plusieurs objets dans des séquences d'images. Nous proposons l'utilisation de formes paramétriques simples pour décrire l'apparition de ces objets. Nous construisons de nouveaux modèles fondés sur des énergies dédiées constituées de plusieurs termes qui tiennent compte à la fois l'attache aux données et les contraintes physiques telles que la dynamique de l'objet, la persistance de la trajectoire et de l'exclusion mutuelle. Nous construisons un schéma d'optimisation approprié qui nous permet de trouver des minima locaux de l'énergie hautement non-convexe proposée qui soient proche de l'optimum global. Comme la simulation de ces modèles requiert un coût de calcul élevé, nous portons notre attention sur les dernières mises en oeuvre de techniques de filtrage pour le suivi d'objets multiples, qui sont connues pour être moins coûteuses en calcul. Nous proposons un échantillonneur hybride combinant le filtre de Kalman avec l'échantillonneur MCMC à sauts réversibles. Des techniques de calcul de haute performance sont également utilisées pour augmenter l'efficacité de calcul de notre méthode. Nous fournissons une analyse en profondeur du cadre proposé sur la base de plusieurs métriques classiques de suivi d'objets et de l'efficacité de calcul. / In this thesis, we combine the methods from probability theory and stochastic geometry to put forward new solutions to the multiple object detection and tracking problem in high resolution remotely sensed image sequences. We create a framework based on spatio-temporal marked point process models to jointly detect and track multiple objects in image sequences. We propose the use of simple parametric shapes to describe the appearance of these objects. We build new, dedicated energy based models consisting of several terms that take into account both the image evidence and physical constraints such as object dynamics, track persistence and mutual exclusion. We construct a suitable optimization scheme that allows us to find strong local minima of the proposed highly non-convex energy. As the simulation of such models comes with a high computational cost, we turn our attention to the recent filter implementations for multiple object tracking, which are known to be less computationally expensive. We propose a hybrid sampler by combining the Kalman filter with the standard Reversible Jump MCMC. High performance computing techniques are also used to increase the computational efficiency of our method. We provide an in-depth analysis of the proposed framework based on standard multiple object tracking metrics and computational efficiency.

Page generated in 0.0692 seconds