• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[pt] ESTUDO DO COMPORTAMENTO DOS QUANTUM DOTS EM MEIO AQUOSO E APLICAÇÃO DESTES NANOMATERIAIS COMO SONDA PARA DETERMINAÇÃO DE RUTINA E QUERCETINA / [en] STUDY OF QUANTUM DOTS IN AQUEOUS MEDIUM AND THEIR APPLICATION AS PROBES FOR THE DETERMINATION OF RUTIN AND QUERCETIN

23 December 2021 (has links)
[pt] As nanopartículas semicondutoras (pontos quânticos ou QDs), na forma de dispersões coloidais aquosas, foram usadas como sondas para determinação indireta de flavonóides. As características especiais desses materiais, decorrente do efeito de confinamento quântico alcançado nas estruturas cujas dimensões são da ordem de poucos nm de diâmetro, resultam em propriedades fotofisicas únicas que podem ser alteradas pelo ajuste do tamanho e/ou na modificação da superfície destes nanocristais. Uma vez que os flavonóides não fluorescem naturalmente, nanopartículas de CdS modificadas com ácido 2-mercaptopropiônico (sonda dos QDs de 2MPA-CdS) e de CdTe modificadas com ácido 3-mercaptopropiônico (sonda dos QDs de 3MPA-CdTe) foram sintetizadas em fase aquosa coloidal e usadas para a determinação indireta de rutina (RUT) e de quercetina (QUE) por meio de medição de decréscimo da fotoluminescência das sondas. A utilização dos QDs como sensores na quantificação destes compostos permitiu a realização de medições fotoluminescentes rápidas e simples, sem a necessidade do uso de complexos procedimentos de derivatização química, usulamente indicados para estes casos. Verificou-se, através do modelo de Stern-Volmer, que o sinal fotoluminescente dos QDs de 2MPA-CdS é atenuado pela presença de RUT, e esta supressão de sinal foi proporcional à concentração de analito na dispersões coloidas (faixa de resposta linear entre 0,5 e 4,0 x 10-5 mol L-1), com limite de detecção (LD) de 1,2 x 10-6 mol L-1. Observou-se também que a supressão de sinal fotoluminescente foi uma combinação da contribuição do efeito filtro (devido à absorção de parcial de radiação pelo analito no comprimento de onda de excitação) e de supressão estática (proveniente da ligação e troca de energia entre analito e QDs). A abordagem foi usada na determinação seletiva de RUT em formulação farmacêutica e em amostras simuladas contendo RUT e QUE ou em saliva fortificada com RUT, nesses dois últimos casos foi associando um método a uma separação prévia de componentes por cromatografia de camada fina. A seletividade em relação a outros flavonóides também foi avaliada. A sonda de 3MPA-CdTe QDs foi usada para a determinação de QUE tanto na dispersão original quanto na dispersão organizada por surfactente (brometo de cetiltrimetilamônio ou CTAB). A QUE foi quantificada em meio não organizado e o método aplicado na análise de suplemento contendo QUE e ácido ascórbico e na análise de extratos de cebolas roxa e amarela. A técnica de cromatografia de camada fina foi utilizada com o intuito de separar a QUE de interferentes presentes na cebola. O modelo de Stern-Volmer foi utilizado para estabelecer uma relação linear entre a fotoluminescência medida na dispersão dos QDs e a quantidade de QUE adicioanda na dispersão. A curva analítica cobriu a faixa de concentrações de QUE entre 0,5 a 6,0 x 10-5 mol L-1 com LD de 0,5 x 10-5 mol L-1. Estudos realizados indicaram que a natureza do quenching formado é estático. Finalmente, um estudo sistemático da interação entre diversos flavonóides e o QDs de 3MPA-CdTe foi estudado de modo a se estabelecer a função do surfactante CTAB no processo de interação entre sonda e supressor. Verificou-se maior estabilidade de sinal da sonda neste meio, e interaçōes analito-QDs distintas daquelas obtidas na ausência do surfactante. / [en] The semiconductor nanoparticles (quantum dots or QDs), in the form of aqueous colloidal dispersions, were used as probes for the indirect determination of flavonoids. The special characteristics of these materials, due to the quantum confinement effect achieved in structures whose dimensions are of the order of a few nm, in diameter, result in unique photophysical properties that can be changed by adjusting the size and/or by surface modification of these nanocrystals. Since flavonoids do not present natural fluorescence, CdS nanoparticles modified with 2-mercaptopropionic acid (2MPA-CdS QDs probe) and CdTe modified with 3-mercaptopropionic acid (3MPA-CdTe QDs probe) have been synthesized in colloidal aqueous phase and used for indirect determination of rutin (RUT) and quercetin (QUE) by measuring the photoluminescence decreasing from the probes. The use of QDs as probes for the quantification of these compounds has allowed the quick and simple photoluminescence measurements without the need for complex chemical derivatization procedures, usually indicated in these cases. It was found, through the Stern-Volmer model, that the photoluminescence of the 2MPA-CdS QDs is attenuated by the presence of RUT, and such a signal suppression was proportional to the concentration of analyte in colloidal dispersion (linear response range between 0,5 to 4.0 x 10-5 mol L-1), with limit of detection (LOD) of 1.2 x 10-6 mol L-1. It was also observed that photoluminescence suppression was a combination of the contribution of inner filter effect (due to partial radiation absorption by the analyte at the wavelength of excitation) and static supression (from the binding and energy exchange between analyte and QDs). The method was used to the selective determination of RUT in pharmaceutical formulation and in simulated samples containing QUE/RUT and/or saliva fortified with RUT. For these former two samples, thin layer chromatography was used to establish prior separation of components. The selectivity towards other flavonoids was also evaluated. The 3MPA-CdTe QDs probe was used to determine QUE in original dispersion and in dispersion containing surfactant (cetyltrimethylammonium bromide or CTAB). QUE was quantified in a non-organized environment (without surfactant) and the method was applied for the analysis in supplement containing QUE and ascorbic acid and for the analysis of purple and yellow onions. Thin layer chromatography was used in order to separate interfering present in onions. The Stern-Volmer model was used to establish a linear relationship between the photoluminescence measurement of the QDs dispersion and the amount of QUE added into the dispersion. The analytical curve covered the range of concentrations between 0.5 to 6.0 x 10-5 mol L-1 of QUE with LD 0.5 x 10-5 mol L-1. Studies indicate that the nature of formed quenching is static. Finally, a systematic study of the interaction between various flavonoids and CdTe-3MPA QDs was studied in order to establish the CTAB surfactant function in the interaction between probe and quencher. It was observed more signal stability of the probe in this medium, and interactions distinct analyte-QDs from those obtained in the absence of surfactant.
22

PIV Analysis of Wake Structure of Real Elephant Seal Whiskers

Bunjevac, Joseph Antun 18 August 2017 (has links)
No description available.
23

Estimation de canal radio-mobile à évolution rapide dans les systèmes à modulation OFMD

Hijazi, Hussein 25 November 2008 (has links) (PDF)
Cette thèse s'inscrit dans le cadre des systèmes radiocommunications numériques pour des récepteurs mobiles basés sur la modulation multi-porteuse OFDM. L'objectif est de proposer des algorithmes d'estimation de canal et de suppression d'IEP pour les <br />récepteurs OFDM à grande mobilité en liaison descendante. Notre démarche est d'estimer les paramètres de propagation du canal physique tels que les retards et les variations temporelles des gains complexes du canal à trajet multiples, au lieu du canal discret équivalent. Nous avons développé une approximation à base de polynôme pour l'évolution des gains complexes d'un canal multi-trajet de type Rayleigh avec un spectre de Jakes. En se basant sur cette modélisation polynomiale, nous avons présenté une étude théorique sur les Bornes de Cramér-Rao Bayésiennes (BCRBs) pour l'estimation des gains complexes du canal, en supposant les délais des trajets connus. Enfin, nous avons développé et analysé trois algorithmes itératifs d'estimation des variations temporelles des gains complexes (à l'intérieur d'un symbole OFDM) et de suppression d'IEP pour des récepteurs à grande mobilité. Les deux premiers sont basés sur l'interpolation (passe-bas ou polynomiale) des valeurs moyennes estimées et sur un égaliseur SSI. Ils ont montré de bonnes performances pour des récepteurs à vitesses modérées (i.e., fd.T <= 0.1). Le troisième algorithme est basé sur une modélisation AR et un filtre de Kalman pour estimer les coefficients polynomiaux des gains complexes, et sur un égaliseur QR. Il a fait preuve de bonnes performances pour des récepteurs à vitesses très élevées (i.e. , fd.T> 0.1).
24

Effect of language task demands on the neural response during lexical access: a functional magnetic resonance imaging study

Gan, Gabriela, Büchel, Christian, Isel, Frédéric 28 November 2013 (has links) (PDF)
This study examined the effects of linguistic task demands on the neuroanatomical localization of the neural response related to automatic semantic processing of concrete German nouns combining the associative priming paradigm with functional magnetic resonance imaging (fMRI). To clarify the functional role of the inferior frontal gyrus (IFG) for semantic processing with respect to semantic decision making compared to semantic processing per se, we used a linguistic task that involved either a binary decision process (i.e., semantic categorization; Experiment 1) or not (i.e., silently thinking about a word's meaning; Experiment 2). We observed associative priming effects indicated as neural suppression in bilateral superior temporal gyri (STG), anterior cingulate cortex (ACC), occipito-temporal brain areas, and in medial frontal brain areas independently of the linguistic task. Inferior parietal brain areas were more active for silently thinking about a word's meaning compared to semantic categorization. A conjunction analysis of linguistic task revealed that both tasks activated the same left-lateralized occipito-temporo-frontal network including the IFG. Contrasting neural associative priming effects across linguistic task demands, we found a significant interaction in the right IFG. The present fMRI data give rise to the assumption that activation of the left inferior frontal gyrus (LIFG) in the semantic domain might be important for semantic processing in general and not only for semantic decision making. These findings contrast with a recent study regarding the role of the LIFG for binary decision making in the lexical domain (Wright et al. 2011).
25

Nanoparticle Mediated Suppression of Protein Aggregation

Das, Anindita January 2015 (has links) (PDF)
The increasing demands for biopharmaceuticals to treat different diseases have raised concerns about controlling the quality and efficacy of such pharmaceuticals. The design and formulation of a stable protein or peptide based biopharmaceutical runs into the limitation that at high concentrations (> 100 mg/ml) or during long storage process the drug undergoes aggregation. During synthesis, purification, storage or packaging of these drugs different kinds of stresses like chemical, oxidative, thermal, shear, etc. are encountered. These stresses promote the non-native aggregation of protein and peptide based drugs. Injection or administration of such drugs if contaminated with aggregates causes patient discomfort or development of an antibody which can adversely affect patient’s conditions. This brings out the necessity of finding a way so that such aggregation is avoided. Nanoparticles have been used as vehicles for drug delivery and diagnostic agents in biology for a while. The surface of the nanoparticles is known to adsorb small as well as large molecules with different kinetics and energetics of interaction. I have used nanoparticles to adsorb proteins to protect them against aggregation when they are subjected to denaturing conditions. The effectiveness of the nanoparticles in stopping protein aggregation, recovery of the proteins and reversibility of the adsorption process, the catalytic activity of the proteins before and after adsorption on the surface have all been studied in details. The work described here has been divided in 8 chapters and the contents of each chapter are described below. In Chapter 1 I have provided a brief introduction to the protein aggregation problem. The motivation and scope of the current work has been presented in this chapter. Materials and methods have been described in Chapter 2. Synthesis of gold and silica nanoparticles, their characterization and stability under experimental conditions have been illustrated in this chapter. The spectroscopic assays and techniques which I have used to study the effect of gold and silica nanoparticles on protein aggregation have been discussed at lengths in this chapter. In Chapter 3 I have demonstrated the effect of gold nanoparticles on thermal aggregation of alcohol dehydrogenase (ADH). The size of the nanoparticle was varied in the range of 15-60 nm and the effect was measured by various spectroscopic assays and techniques. I have observed that gold nanoparticles prevent thermal aggregation of ADH and the efficiency is high. Gold nanoparticles in nanomolar or even picomolar concentrations are capable of preventing the aggregation of ADH at micromolar concentrations. In Chapter 4 the role of gold nanoparticles as suppressor of protein aggregation was extended to another protein, insulin. Chemically induced aggregation of insulin using dithiothreitol (DTT) in the presence of gold nanoparticles was studied in the same manner as was done for ADH. Similar prevention property of gold nanoparticles was established by making the observation independent of the method of denaturation or the type of protein used in the prevention experiments. In Chapter 5 huge second harmonic light scattering (SHS) signal from pure gold nanoparticles has been used to measure the free energy of interaction of ADH and insulin with nanoparticles in solution, for the first time. The change in the second harmonic scattered signal was monitored which decreased steadily as a function of added protein concentration to the aqueous solution of gold nanoparticles. The fitting of the second harmonic signal decay was done with a modified Langmuir adsorption isotherm to extract the free energy change in the interaction and the number of protein molecules adsorbed on the surface. In Chapter 6 I have demonstrated a way to recover the adsorbed ADH and insulin from the gold nanoparticle surface and tested the activity of ADH by an assay. The structure of the proteins in the adsorbed state has been probed by CD spectroscopy and described in this chapter. It is found that ADH retains its activity in the adsorbed state. Both the proteins retain the native secondary structures in their adsorbed state. However, the structures change drastically under denaturing conditions. In Chapter 7 the effect silica nanoparticles which are known to have hydrophilic surface has been examined on the aggregation of ADH and insulin in pretty much the same way as was done with gold nanoparticles. The efficiency of silica nanoparticle was found to be lower compared to gold nanoparticles. In addition, the size dependency of prevention efficiency of silica and gold nanoparticles was found to be completely opposite to each other. In Chapter 8 I have presented the overall summary and possible future directions of this work
26

Effect of language task demands on the neural response during lexical access: a functional magnetic resonance imaging study

Gan, Gabriela, Büchel, Christian, Isel, Frédéric 28 November 2013 (has links)
This study examined the effects of linguistic task demands on the neuroanatomical localization of the neural response related to automatic semantic processing of concrete German nouns combining the associative priming paradigm with functional magnetic resonance imaging (fMRI). To clarify the functional role of the inferior frontal gyrus (IFG) for semantic processing with respect to semantic decision making compared to semantic processing per se, we used a linguistic task that involved either a binary decision process (i.e., semantic categorization; Experiment 1) or not (i.e., silently thinking about a word's meaning; Experiment 2). We observed associative priming effects indicated as neural suppression in bilateral superior temporal gyri (STG), anterior cingulate cortex (ACC), occipito-temporal brain areas, and in medial frontal brain areas independently of the linguistic task. Inferior parietal brain areas were more active for silently thinking about a word's meaning compared to semantic categorization. A conjunction analysis of linguistic task revealed that both tasks activated the same left-lateralized occipito-temporo-frontal network including the IFG. Contrasting neural associative priming effects across linguistic task demands, we found a significant interaction in the right IFG. The present fMRI data give rise to the assumption that activation of the left inferior frontal gyrus (LIFG) in the semantic domain might be important for semantic processing in general and not only for semantic decision making. These findings contrast with a recent study regarding the role of the LIFG for binary decision making in the lexical domain (Wright et al. 2011).

Page generated in 0.4312 seconds