• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of recombinant passenger properties and process conditions on surface expression using the AIDA-I autotransporter

Gustavsson, Martin January 2013 (has links)
Surface expression has attracted much recent interest, and it has been suggested for a variety of applications. Two such applications are whole-cell biocatalysis and the creation of live vaccines. For successful implementation of these applications there is a need for flexible surface expression systems that can yield a high level of expression with a variety of recombinant fusion proteins. The aim of this work was thus to create a surface expression system that would fulfil these requirements.   A novel surface expression system based on the AIDA-I autotransporter was created with the key qualities being are good, protein-independent detection of the expression through the presence of two epitope tags flanking the recombinant protein, and full modularity of the different components of the expression cassette. To evaluate the flexibility of this construct, 8 different model proteins with potential use as live-vaccines or biocatalysts were expressed and their surface expression levels were analysed.   Positive signals were detected for all of the studied proteins using antibody labelling followed by flow cytometric analysis, showing the functionality of the expression system. The ratio of the signal from the two epitope tags indicated that several of the studied proteins were present mainly in proteolytically degraded forms, which was confirmed by Western blot analysis of the outer membrane protein fraction. This proteolysis was suggested to be due to protein-dependent stalling of translocation intermediates in the periplasm, with indications that larger size and higher cysteine content had a negative impact on expression levels. Process design with reduced cultivation pH and temperature was used to increase total surface expression yield of one of the model proteins by 400 %, with a simultaneous reduction of proteolysis by a third. While not sufficient to completely remove proteolysis, this shows that process design can be used to greatly increase surface expression. Thus, it is recommended that future work combine this with engineering of the bacterial strain or the expression system in order to overcome the observed proteolysis and maximise the yield of surface expressed protein. / <p>QC 20130516</p>
2

SUMOylation Is Required for Glycine-Induced Increases in AMPA Receptor Surface Expression (ChemLTP) in Hippocampal Neurons

Jaafari, N., Konopacki, F.A., Owen, T.F., Kantamneni, Sriharsha, Rubin, P., Craig, T.J., Wilkinson, K.A., Henley, J.M. 16 November 2012 (has links)
yes / Multiple pathways participate in the AMPA receptor trafficking that underlies long-term potentiation (LTP) of synaptic transmission. Here we demonstrate that protein SUMOylation is required for insertion of the GluA1 AMPAR subunit following transient glycine-evoked increase in AMPA receptor surface expression (ChemLTP) in dispersed neuronal cultures. ChemLTP increases co-localisation of SUMO-1 and the SUMO conjugating enzyme Ubc9 and with PSD95 consistent with the recruitment of SUMOylated proteins to dendritic spines. In addition, we show that ChemLTP increases dendritic levels of SUMO-1 and Ubc9 mRNA. Consistent with activity dependent translocation of these mRNAs to sites near synapses, levels of the mRNA binding and dendritic transport protein CPEB are also increased by ChemLTP. Importantly, reducing the extent of substrate protein SUMOylation by overexpressing the deSUMOylating enzyme SENP-1 or inhibiting SUMOylation by expressing dominant negative Ubc9 prevent the ChemLTP-induced increase in both AMPAR surface expression and dendritic SUMO-1 mRNA. Taken together these data demonstrate that SUMOylation of synaptic protein(s) involved in AMPA receptor trafficking is necessary for activity-dependent increases in AMPAR surface expression. / Medical Research Council, the European Research Council and the Wellcome Trust
3

Strategies for improved Escherichia coli bioprocessing performance

Jarmander, Johan January 2015 (has links)
Escherichia coli has a proven track record for successful production of anything from small molecules like organic acids to large therapeutic proteins, and has thus important applications in both R&amp;D and commercial production. The versatility of this organism in combination with the accumulated knowledge of its genome, metabolism and physiology, has allowed for development of specialty strains capable of performing very specific tasks, opening up opportunities within new areas. The work of this thesis has been devoted to alter membrane transport proteins and the regulation of these, in order for E. coli to find further application within two such important areas. The first area was vaccine development, where it was investigated if E. coli could be a natural vehicle for live vaccine production. The hypothesis was that the introduction and manipulation of a protein surface translocation system from pathogenic E. coli would result in stable expression levels of Salmonella subunit antigens on the surface of laboratory E. coli. While different antigen combinations were successfully expressed on the surface of E. coli, larger proteins were affected by proteolysis, which manipulation of cultivation conditions could reduce, but not eliminate completely. The surface expressed antigens were further capable of inducing proinflammatory responses in epithelial cells. The second area was biorefining. By altering the regulation of sugar assimilation, it was hypothesized that simultaneous uptake of the sugars present in lignocellulose hydrolyzates could be achieved, thereby improving the yield and productivity of important bio-based chemicals. The dual-layered catabolite repression was identified and successfully removed in the engineered E. coli, and the compound (R)-3-hydroxybutyric acid was produced from simultaneous assimilation of glucose, xylose and arabinose. / <p>QC 20150508</p>
4

Development and Validation of a Novel Quantitative Assay for Cell surface Expression of GPCRs using a Receptor β-lactamase fusion Protein and the Colourometric Substrate Nitrocefin

Lam, Vincent 12 July 2013 (has links)
Trafficking of GPCRs is a dynamic process that is tightly regulated and sometimes defective in human diseases. Therefore it is important to develop new methods to allow simple and quantitative measurement of surface expression of membrane proteins. Here we describe the development and validation of a new assay for quantification of cell surface expression of GPCRs using β-lactamase as a reporter. For this assay we N-terminally fused β-lactamase (βlac) to the β2-adrenergic receptor (β2AR) and GABA b R1 (GBR1). The results obtained by the βlac assay are quantitatively and qualitatively similar to well established ELISA when measuring agonist induced internalization of β2AR. We also show that measurement of GBR1 surface expression with GBR2 co-expression is quantitatively identical between the βlac and ELISA. In conclusion, our results show that our newly developed βlac assay is quantitatively similar while being less expensive, more robust and higher throughput compared to an ELISA.
5

Development and Validation of a Novel Quantitative Assay for Cell surface Expression of GPCRs using a Receptor β-lactamase fusion Protein and the Colourometric Substrate Nitrocefin

Lam, Vincent 12 July 2013 (has links)
Trafficking of GPCRs is a dynamic process that is tightly regulated and sometimes defective in human diseases. Therefore it is important to develop new methods to allow simple and quantitative measurement of surface expression of membrane proteins. Here we describe the development and validation of a new assay for quantification of cell surface expression of GPCRs using β-lactamase as a reporter. For this assay we N-terminally fused β-lactamase (βlac) to the β2-adrenergic receptor (β2AR) and GABA b R1 (GBR1). The results obtained by the βlac assay are quantitatively and qualitatively similar to well established ELISA when measuring agonist induced internalization of β2AR. We also show that measurement of GBR1 surface expression with GBR2 co-expression is quantitatively identical between the βlac and ELISA. In conclusion, our results show that our newly developed βlac assay is quantitatively similar while being less expensive, more robust and higher throughput compared to an ELISA.
6

Surface expression using the AIDA autotransporter :  Towards live vaccines and whole-cell biocatalysis

Gustavsson, Martin January 2011 (has links)
The area of surface expression has gathered a lot of interest from research groups all over the world and much work is performed in the area. Autotransporters have been used for surface expression in Gram-negative bacteria. One of the more commonly used autotransporters is the Adhesin Involved in Diffuse Adherence (AIDA) of pathogenic Escherichia coli. The surface expression of enzymes and vaccine epitopes offer several advantages. Surface expressed enzymes gain similar properties to immobilised enzymes, mainly simplified handling and separation using centrifugation. Surface expressed vaccine epitopes can have longer half-lives inside the animal that is to be immunized and surface groups on the host cell can act as adjuvants, increasing the immune response and leading to a better immunisation.    However, while much basic research is directed towards mechanisms of surface expression using autotransporters there are few reports regarding production of surface expressed protein. Thus the aim of this work was the optimisation of the yield and productivity of surface expressed protein. Protein Z, an IgG-binding domain of Staphylococcal protein A, was used as a model protein for the investigation of which cultivation parameters influenced surface expression. The choice of cultivation medium gave the largest impact on expression, which was attributed to effects based on the induction of the native promoter of AIDA. The AIDA system was then used for the expression of two Salmonella surface proteins, SefA and H:gm, with potential for use as vaccine epitopes. SefA was verified located on the cell surface, and H:gm was found in the outer membrane of the host cell, though only in proteolytically truncated forms lacking the His6-tag used for detection. This proteolysis persisted in E. coli strains deficient for the outer membrane protease OmpT and was concluded to be dependent on other proteases. The removal of proteolysis and further optimisation of the yield of surface-expressed protein are important goals of further work. / QC 20111123 / Vinnova: BIO-AMINES / SIDA Vietnam: Production of viral proteins for vaccine development
7

Improved detection and performance of surface expression from the AIDA-I autotransporter

Jarmander, Johan January 2013 (has links)
Surface expression of recombinant proteins has attracted a lot of attention due to its potential in applications such as enzyme production, vaccine delivery and bioremediation. Autotransporters have been used for surface expression of a variety of proteins, but the expression systems reported in literature have typically been inflexible and incapable of detecting proteolysis, thereby limiting surface expression yield. In this thesis, a modular surface expression system, utilizing dual tag detection, was therefore created. It was based on the adhesin involved in diffuse adherence (AIDA-I) autotransporter, and was here used to express the model proteins SefA and H:gm on the cell surface of Escherichia coli. Due to the dual tag detection system, proteolysed H:gm could be successfully verified on the cell surface. By optimizing cultivation conditions, surface expression yield of SefA was increased by 300 %, and proteolysis reduced by 33 %. While proteolysis could not be eliminated completely, the work presented in this thesis is a major step towards a general system for surface expression of a wide range of proteins in varied applications. / <p>QC 20130506</p>
8

Removal of Ni (II) from water using recombinant Escherichia coli / Nickeladsoption från förorenat vatten med hjälp av rekombinant E. coli

Berg, Marie January 2012 (has links)
No description available.
9

RE-PR/NT/NG

Seihine, Freja January 2023 (has links)
The growing demand for fast fashion and chea pgarments has led to a system of overproduction and overconsumption leaving tons of discarded textiles in landfills every year. This project investigates how textile waste can be up-cycled and redesigned into fashionable garments of higher value by merging textiles and applying surface design techniques. In this project two techniques were explored in relation to up-cycling, slashing and printing. Printing as a method to give new print designs and slashing as a tool to merge textiles together and create patterns and textures aiming to find new surface expressions and challenge the current up-cycling aesthetic. The outcome of the collection reveals various ways one can work with slashing and printing as a method to transform and elevate different types of garments and materials found within discarded textiles. It shows an example of how material exploration can guide the way to create garments and that by mixing textile design and fashion design one can explore different properties simultaneously.
10

Differential Roles of Tryptophan Residues in the Functional Expression of Human Anion Exchanger 1

Okawa, Yuka 15 August 2012 (has links)
Anion exchanger 1 (AE1) is a 95 kDa glycoprotein that facilitates Cl-/HCO3- exchange across the erythrocyte plasma membrane. Seven conserved tryptophan (Trp) residues are in the AE1 membrane domain; at the membrane interface (Trp648, Trp662, and Trp723), in transmembrane segment (TM) 4 (Trp492 and Trp496), and in hydrophilic loops (Trp831, and Trp848). All 7 Trp residues were individually mutated into alanine (Ala) and phenylalanine (Phe) and transiently expressed in human embryonic kidney (HEK)-293 cells. The 7 Trp residues could be grouped into three classes according to the impact of the mutations on the functional expression of AE1: class 1, normal expression, class 2, expression decreased, and class 3, expression decreased by Ala substitution. These results indicate that Trp residues play differential roles in AE1 expression depending on their location in the protein and suggest that Trp mutants with a low expression are misfolded and retained in the ER.

Page generated in 0.0803 seconds