Spelling suggestions: "subject:"burface micromachining"" "subject:"burface micromachinings""
11 |
Mikromechanische Ultraschallwandler aus SiliziumJia, Chenping 13 December 2005 (has links) (PDF)
This paper discusses basic issues of micromachined ultrasonic transducers, including their design and fabrication. First, the acoustic fundamentals of ultrasonic transducers are introduced, and relevant simulation methods are illustrated. Following these topics, important aspects of silicon micromachining are presented. Based on this knowledge, two distinctive micromachining processes for transducer fabrication are proposed. One of them, the bulk process, has been proved to be successful, whereas for the second one, a surface process, some improvements are still needed. Besides these works, an innovative direct bonding technology is also developed. This technology constitutes the basis of the bulk process. Of course, it can also be used for the packaging of other MEMS devices.
|
12 |
Analysis and Design of Surface Micromachined Micromanipulators for Out-of-Plane MicropositioningJensen, Kimberly A. 23 July 2003 (has links) (PDF)
This thesis introduces two ortho-planar MEMS devices that can be used to position microcomponents: the XZ Micropositioning Mechanism and the XYZ Micromanipulator. The displacement and force relationships are presented. The devices were fabricated using surface micromachining processes and the resulting mechanisms were tested. A compliant XYZ Micromanipulator was also designed to reduce backlash and binding. In addition, several other MEMS positioners were fabricated and tested: the Micropositioning Platform Mechanism (MPM), the Ortho-planar Twisting Micromechanism (OTM), and the Ortho-planar Spring Micromechanism (OSM).
|
13 |
Fabrication of Hollow Optical Waveguides on Planar SubstratesBarber, John P. 16 October 2006 (has links) (PDF)
This dissertation presents the fabrication of hollow optical waveguides integrated on planar substrates. Similar in principle to Bragg waveguides and other photonic crystal waveguides, the antiresonant reflecting optical waveguide (ARROW) is used to guide light in hollow cores filled with liquids or gases. Waveguides with liquid or gas cores are an important new building block for integrated optical sensors. The fabrication method developed for hollow ARROW waveguides makes use of standard microfabrication processes and materials. Dielectric layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD) to form the bottom layers of the ARROW waveguide. A sacrificial core material is then deposited and patterned. Core materials used include aluminum, SU-8 and reflowed photoresist, each resulting in a different core geometry. Additional dielectric layers are then deposited, forming the top and sides of the waveguide. The sacrificial core is then removed in an acid solution, resulting in a hollow ARROW waveguide. Experiments investigating the mechanical strength of the hollow waveguides and the etching characteristics of the sacrificial core suggest design rules for the different core types. Integration of solid-core waveguides is accomplished by etching a ridge into the top dielectric layer of the ARROW structure. Improved optical performance can be obtained by forming the waveguides on top of a raised pedestal on the silicon substrate. Loss measurements on hollow ARROW waveguides fabricated in this manner gave loss coefficients of 0.26 cm-1 for liquid-core waveguides and 2.6 cm-1 for air-core waveguides. Fluorescence measurements in liquid-core ARROW waveguides have achieved single-molecule detection sensitivity. Integrated optical filters based on ARROW waveguides were fabricated, and preliminary results of a capillary electrophoresis separation device using a hollow ARROW indicate the feasibility of such devices for future investigation.
|
14 |
Development Of Mems Technology Based Microwave And Millimeter-wave ComponentsCetintepe, Cagri 01 February 2010 (has links) (PDF)
This thesis presents development of microwave lumped elements for a specific surface-micromachining based technology, a self-contained mechanical characterization of fixed-fixed type beams and realization of a shunt, capacitive-contact RF MEMS switch for millimeter-wave applications.
Interdigital capacitor, planar spiral inductor and microstrip patch lumped elements developed in this thesis are tailored for a surface-micromachining technology incorporating a single metallization layer, which allows an easy and low-cost fabrication process while permitting mass production. Utilizing these elements, a bandpass filter is fabricated monolithically with success, which exhibits a measured in-band return loss better than -20 dB and insertion loss of 1.2 dB, a pass-band located in S-band and a stop-band extending up to 20 GHz.
Analytical derivations for deflection profile and spring constant of fixed-fixed beams are derived for constant distributed loads while taking axial effects into account. Having built experience with the mechanical domain, next, Finite Difference solution schemes are established for pre-pull-in and post-pull-in electrostatic actuation problems. Using the developed numerical tools / pull-in, release and zipping phenomena are investigated. In particular, semi-empirical expressions are developed for the pull-in voltage with associated errors not exceeding 3.7 % of FEA (Finite Element Analysis) results for typical configurations.
The shunt, capacitive-contact RF MEMS switch is designed in electromagnetic and mechanical domains for Ka-band operation. Switches fabricated in the first process run could not meet the design specifications. After identifying sources of relevant discrepancies, a design modification is attempted and re-fabricated devices are operated successfully. In particular, measured OFF-state return and insertion losses better than
-16.4 dB and 0.27 dB are attained in 1-40 GHz. By applying a 20-25V actuation, ON-state resonances are tuned precisely to 35 GHz with an optimum isolation level of 39 dB.
|
15 |
Development Of High Fill Factor And High Performance Uncooled Infrared Detector PixelsKucuk, Seniz Esra 01 September 2011 (has links) (PDF)
This thesis presents the design, fabrication and characterization of high performance and high fill factor surface micromachined uncooled infrared resistive microbolometer detectors which can be used in large format focal plane arrays (FPAs). The detector pixels, which have a pixel pitch of 25 &mu / m, are designed and fabricated as two-level structures using the enhanced sandwich type resistor while the active material is selected as Yttrium Barium Copper Oxide (YBCO). First level of the pixel structure is allocated for the formation of the support arms in order to obtain longer support arms hence lower thermal conductance values to get the desired high performance levels. The pixel body is built in the second level such that the fill factor and absorption of the detector is maximized. Structural and sacrificial layer thicknesses are also optimized in order to increase the absorption coefficient of the pixel in the 8-12 &mu / m wavelength range. The thermal simulations are conducted using finite element method (FEM) by CoventorWare software. The designed pixel has a fill factor of 92 % together with the thermal conductance and thermal time constant values calculated as 16.8 nW/K and 19.3 ms in the simulations, respectively.
The pixels are fabricated at METU MEMS facilities after the design of a CMOS compatible process flow. All process steps are optimized individually to obtain the expected high performance. Characterization step of the pixels includes the measurements of temperature coefficient of resistance (TCR), noise and thermal conductance value together with the thermal time constant. Effective TCR of the pixel is measured as -2.81 %/K for a pixel with a support arm resistance of 8 k&Omega / and total resistance of 55 k&Omega / . The corner frequency of 1/f noise in the pixel is 9.5 kHz and 1.4 kHz under 20 &mu / A and 10 &mu / A current bias, respectively. The total rms noise is 192 pA within 8.4 kHz bandwidth for a current bias of 20 &mu / A. Thermal conductance, Gth, of the pixel is measured as 17.4 nW/K with a time constant of 17.5 ms.
The measurement results indicate that the single pixels designed and fabricated in the scope of this thesis are applicable to large format FPAs in order to obtain a high performance imager. The expected NETD values are 33 mK and 36 mK for 384x288 and 640x480 format FPAs, respectively.
|
16 |
Mikromechanische Ultraschallwandler aus SiliziumJia, Chenping 12 December 2005 (has links)
This paper discusses basic issues of micromachined ultrasonic transducers, including their design and fabrication. First, the acoustic fundamentals of ultrasonic transducers are introduced, and relevant simulation methods are illustrated. Following these topics, important aspects of silicon micromachining are presented. Based on this knowledge, two distinctive micromachining processes for transducer fabrication are proposed. One of them, the bulk process, has been proved to be successful, whereas for the second one, a surface process, some improvements are still needed. Besides these works, an innovative direct bonding technology is also developed. This technology constitutes the basis of the bulk process. Of course, it can also be used for the packaging of other MEMS devices.
|
17 |
Broadband Phase Shifter Realization With Surface Micromachined Lumped ComponentsTokgoz, Korkut Kaan 01 September 2012 (has links) (PDF)
Phase Shifters are one of the most important building cells of the applications in microwave and millimeter-wave range, especially for communications and radar applications / to steer the main beam for electronic scanning. This thesis includes all of the stages starting from the theoretical design stage to the measurements of the phase shifters. In detail, all-pass network phase shifter configuration is used to achieve broadband and ultra wide-band differential phase characteristics. For these reasons, 1 to 2 GHz, 2 to 4 GHz, and 3 to 6 GHz 4-bit, 22.5° / phase resolution phase shifter realization with surface micromachined lumped components are designed, simulated, fabricated and measured. Basic building blocks of the phase shifters, i.e., surface micromachined lumped components, square planar spiral inductors and Metal-Insulator-Metal capacitors are designed with EM simulation and lumped equivalent model extractions. The validation of the designed square planar spiral inductors is done with fabrication and measurement steps, very low error, below 1%, between the designs and fabricated samples are observed. Using this knowledge on lumped elements finally phase shifters are designed with surface micromachined lumped components, fabricated using an in house technology provided by METU-MEMS facilities, RF MEMS group. Low phase rms error, good return and insertion loss considerations are aimed, and achieved.
In addition to the main work of this thesis, a generalized theoretical calculation method for 2n-1 number of stages all-pass network phase shifters is presented for the first time in literature. A different, new, broadband, and combined phase shifter topology using two-stage all-pass filters is presented. Moreover, the implementation of this idea is proved to be practical to 3 to 6 GHz 5.625° / and 11.25° / combined phase shifter.
A new approach for stage numbers other than power of 2 is indicated, which is different from what is already presented in the literature. An example practical implementation results are provided for the three-stage 4-bit 1 to 6 GHz phase shifter.
Also, a small improvement in SRF of the high inductance valued inductors is achieved with the mitering of the corners of square planar spiral inductors. Comparison of the measured data between the normal inductors and mitered versions shows that the first SRF of the inductors are increased about 80 MHz, and second SRF of the inductors are increased about 200 MHz.
|
18 |
Studies on the Design of Novel MEMS MicrophonesMalhi, Charanjeet Kaur January 2014 (has links) (PDF)
MEMS microphones have been a research topic for the last two and half decades. The state-of-the-art comprises surface mount MEMS microphones in laptops, mobile phones and tablets, etc. The popularity and the commercial success of MEMS microphones is largely due to the steep cost reduction in manufacturing afforded by the mass scale production with microfabrication technology. The current MEMS microphones are de-signed along the lines of traditional microphones that use capacitive transduction with or without permanent charge (electret type microphones use permanent charge of their sensor element). These microphones offer high sensitivity, stability and reasonably at frequency response while reducing the overall size and energy consumption by exploiting MEMS technology.
Conceptually, microphones are simple transducers that use a membrane or diaphragm as a mechanical structure which deflects elastically in response to the incident acoustic pressure. This dynamic deflection is converted into an electrical signal using an appropriate transduction technique. The most popular transduction technique used for this application is capacitive, where an elastic diaphragm forms one of the two parallel plates of a capacitor, the fixed substrate or the base plate being the other one. Thus, there are basically two main elements in a microphone { the elastic membrane as a mechanical element, and the transduction technique as the electrical element. In this thesis, we propose and study novel design for both these elements. In the mechanical element, we propose a simple topological change by introducing slits in the membrane along its periphery to enhance the mechanical sensitivity. This simple change, however, has significant impact on the microphone design, performance and its eventual cost. Introduction of slits in the membrane makes the geometry of the structural element non-trivial for response analysis. We devote considerable effort in devising appropriate modeling techniques for deriving lumped parameters that are then used for simulating the system response. For transduction, we propose and study an FET (Field Effect Transistor) coupled micro-phone design where the elastic diaphragm is used as the moving (suspended) gate of an FET and the gate deflection modulated drain current is used in the subthreshold regime of operation as the output signal of the microphone. This design is explored in detail with respect to various design parameters in order to enhance the electrical sensitivity. Both proposed changes in the microphone design are motivated by the possibilities that the microfabrication technology offers. In fact, the design proposed here requires further developments in MEMS technology for reliably creating gaps of 50-100 nm between the substrate and a large 2D structure of the order of a few hundred microns in diameter.
In the First part of the thesis, we present detailed simulations of acoustic and squeeze lm domain to understand the effect slits could bring upon the behaviour of the device as a microphone. Since the geometry is nontrivial, we resort to Finite element simulations using commercial packages such as COMSOL Multiphysics and ANSYS in the structural, acoustic and Fluid-structure domains to analyze the behaviour of a microphone which has top plate with nontrivial geometry. On the simulated Finite element data, we conduct low and high frequency limit analysis to extract expressions for the lumped parameters. This technique is well known in acoustics. We borrow this technique of curve Fitting from the acoustics domain and apply it in modified form into the squeeze lm domain. The dynamic behaviour of the entire device is then simulated using the extracted parameters. This helps to simulate the microphone behaviour either as a receiver or as a transmitter.
The designed device is fabricated using MEMSCAP PolyMUMPS process (a foundry Polysilicon surface micromachining process). We conduct vibrometer (electrostatic ex-citation) and acoustic characterization. We also study the feasibility of a microphone with slits and the issues involved. The effect of the two dissipation modes (acoustic and squeeze lm ) are quantified with the experimentally determined quality factor. The experimentally measured values are: Resonance is 488 kHz (experimentally determined), low frequency roll-off is 796 Hz (theoretical value) and is 780 Hz as obtained by electrical characterization.
The first part of this thesis focusses on developing a comprehensive understanding
of the effect of slits on the performance of a MEMS microphone. The presence of slits near the circumference of the clamped plate cause reduction in its rigidity. This leads to an increase in the sensitivity of the device. Slits also cause pressure equalization between the top and bottom of the diaphragm if the incoming sound is at relatively low frequencies. At this frequency, also known as the lower cutoff frequency, the microphone's response starts dropping. The presence of slits also changes the radiation impedance of the plate as well as the squeeze lm damping below the plate. The useful bandwidth of the microphone changes as a consequence. The cavity formed between the top plate and the bottom fixed substrate increases the stiffness of the device significantly due to compression of the trapped air. This effect is more pronounced here because unlike the existing capacitive MEMS microphones, there is no backchamber in the device fabricated here.
In the second part of the thesis, we present a novel subthreshold biased FET based MEMS microphone. This biasing of the transistor in the subthreshold region (also called as the OFF-region) offers higher sensitivity as compared to the above threshold region (also called as the ON-region) biasing. This is due to the exponentially varying current with change in the bias voltage in the OFF-region as compared to the quadratic variation in the ON-region. Detailed simulations are done to predict the behaviour of the device. A lumped parameter model of the mechanical domain is coupled with the drain current equations to predict the device behaviour in response to the deflection of the moving gate. From the simulations, we predict that the proposed biasing offers a device sensitive to even sub-nanometer deflection of the flexible gate. As a proof of concept, we fabricate fixed-fixed beams which utilize CMOS-MEMS fabrication. The process involves six lithography steps which involve two CMOS and the remaining MEMS fabrication. The fabricated beams are mechanically characterized for resonance. Further, we carry out electrical characterization for I-V (current-voltage) characteristics.
The second part of the thesis focusses on a novel biasing method which circumvents the need of signal conditioning circuitry needed in a capacitive based transduction due to inbuilt amplification. Extensive simulations with equivalent circuit has been carried out to determine the increased sensitivity and the role of various design variables.
|
19 |
Nonlinear devices characterization and micromachining techniques for RF integrated circuitsParvais, Bertrand J. H. 10 December 2004 (has links)
The present work is dedicated to the development of high performance integrated circuits for wireless communications, by acting of three different levels: technologies, devices, and circuits.
Silicon-on-Insulator (SOI) CMOS technology is used in the frame of this work. Micromachining technologies are also investigated for the fabrication of three-dimensional tunable capacitors. The reliability of micromachined thin-film devices is improved by the coating of silanes in both liquid- and vapor-phases.
Since in telecommunication applications, distortion is responsible for the generation of spurious frequency bands, the linearity behavior of different SOI transistors is analyzed. The validity range of the existing low-frequency nonlinear characterization methods is discussed. New simple techniques valid at both low- and high-frequencies, are provided, based on the integral function method and on the Volterra series.
Finally, the design of a crucial nonlinear circuit, the voltage-controlled oscillator, is introduced. The describing function formalism is used to evaluate the oscillation amplitude and is embedded in a design methodology. The frequency tuning by SOI varactors is analyzed in both small- and large-signal regimes.
|
Page generated in 0.0613 seconds