• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 10
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 86
  • 86
  • 14
  • 13
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Effect of Topography on Surface Behavior of Pseudomonas aeruginosa

Chang, Yow-Ren 17 October 2019 (has links)
Bacterial biofilms are communities of micro-organisms encased a self-produced extracellular matrix. While they form readily in a nature, biofilm formation in man-made systems have economic and health consequences. Prior research demonstrated that topographical features comprised of uniform, micro-meter sized particles hindered the biofilm formation of Pseudomonas aeruginosa (P. aeruginosa), an opportunistic human pathogen. The goal of the present work is to 1) further develop a potential anti-biofilm coating by improving its robustness and 2) study the mechanism(s) by which surface topography hinders biofilm formation. The robustness of a topographical coating comprised of an array of silica particles is improved by the introduction of silica bridges through a sol-gel reaction. To study the mechanism(s), specifically, we hypothesized that the motion, or surface motility, of P. aeruginosa is hindered by the presence of micro-meter scale obstacles via physical obstruction. To test this, we analyzed the behavior of single P. aeruginosa cells at micron-scale spatial resolutions using time-lapse fluorescence microscopy, image analysis, and particle tracking techniques. We fabricated various types of micron-scale topography with curvature (particle arrays) and recti-linear features (vertical steps) and varied the critical dimension within the range of 0.5 – 10 µm which spans the dimensions of a typical P. aeruginosa cell. We found that there was a threshold feature size of 1-2 µm at which bacterial surface motility is drastically impacted. On positively curved topography (particle arrays), we found that the frequent obstacles reduced the average speed of a bacterium from 6.2  0.3 µm per 5 min on a flat surface to 2.1  0.3 µm per 5 min on an array of 2 µm particles. Furthermore, we observed that bacteria often move in-between particles, suggesting that bacteria have difficulty climbing over tall obstacles. To further investigate P. aeruginosa's ability to cope with topography, we examined the effect of recti-linear features (vertical steps) on surface motility. We found that step heights > 0.9 µm drastically reduced the probability of crossing and that the average speed when approaching the step is reduced by a factor of 2. Interestingly, we find that bacteria have a slight preference to traverse down which is against the direction of gravity in our system. In summary, these results offer insights into how a surface motile bacterium copes with a topographical surface. Our data indicate that the topography of a surface can impede the surface motility of bacterium and thus, may be an important mechanism by which topography prevents biofilm formation. / Doctor of Philosophy / Bacteria and other micro-organisms can grow on surfaces such as medical devices and cause infections. Other examples of where bacteria can grow are on drains and pipes causing clogging, and on the hulls of ships, thus increasing drag. The goal of the current work is to investigate material coatings that resist the attachment and growth of bacteria on surfaces. We demonstrate that changing the roughness of the surface can reduce the number of bacteria found on the surface. More specifically, we have made surfaces covered with spheres that are approximately the same size as a bacterium, about 1 micrometer (10x smaller than the diameter of hair). We find that the spheres act as physical obstacles that block bacteria from moving on a surface. These results suggest that changing the micro-scale geometry of a surface may reduce the rate of infections on medical devices or hinder the growth of bacteria in other systems
22

On the running-in of gears

Sjöberg, Sören January 2010 (has links)
<p>The general trend in gear industry, today, is an increased focus on gear transmission efficiency. Gear transmission efficiency losses arise from loaded and unloaded gear contacts, seals, lubricant and bearings. One way of minimising the losses is to lower the lubricant viscosity. This will reduce the speed dependent losses. However, the load dependent losses might increase. To avoid this, the ratio between lubricant film thickness and surface roughness must be maintained, which can be fulfilled by producing smoother gear surfaces. As a starting point for this realisation process, the present manufacturing processes, the design tools and the characteristics of the gear flank interface must be further investigated and developed. This must be achieved with an emphasis on economic production.</p><p>This thesis focuses on our understanding of how different gear manufacturing methods —particularly the contribution of the running-in process—affect the surface characteristics, with the view of increasing gearbox efficiency. The thesis consists of a summary and three appended papers.</p><p>Paper A and paper B discuss the relationship between design parameters and real gear wheel surfaces manufactured with different manufacturing methods. The research hypothesis was that the contact area ratio is a descriptive parameter for the contact condition. Paper A deals with the influence of manufacturing method on the initial contact conditions and also serves as a validation of the simulation program used. The emphasis in Paper B is the changes that occur during running-in, and to correlate these changes to design requirements. Paper C approaches the influences of manganese phosphate-coating and lubricants with respect to friction and the risk of scuffing at the initial contact.</p><p>The main conclusions of this thesis are that the contact area ratio presents a descriptive measure of how surface topography influences the contact, seen at both a global (form deviation) and local (roughness) level. The surface topography caused by the manufacturing method has a significant influence on the contact area ratio. This is an important result, since neither national standards nor commercially available gear evaluation programs handle surface topography on the local scale. Shaving was found to have the highest contact area ratio, and should therefore be the best choice if deviations from case hardening could be minimised. It is also confirmed that gear-like surfaces coated with manganese phosphate have a low coefficient of friction, and raise the limiting load for scuffing failure enormously compared to the ground equivalent.</p> / QC 20100518 / KUGG / Sustainable gear transmission realization
23

Desenvolvimento de um experimento com controle da excitação para análise da contribuição de materiais de fricção sobre vibrações induzidas na superfície de um disco de freio

Poletto, Jean Carlos January 2018 (has links)
A presente dissertação descreve o desenvolvimento e análise de um experimento concebido para avaliar a contribuição de materiais de fricção sobre vibrações induzidas na superfície de um disco de freio. O aparato proposto é equipado com um excitador modal (shaker), utilizado para promover e controlar o sinal de excitação que foi aplicado sobre os materiais de fricção avaliados. A resposta dessa excitação na superfície do disco de freio foi mensurada através de acelerômetros. Além da aplicação sobre o experimento proposto, foram avaliados o coeficiente de atrito e a distribuição de asperezas da superfície das oito amostras utilizadas. A característica modal do disco utilizado foi descrita através das suas frequências naturais, amortecimento e formas modais, parâmetros identificados através da aplicação de análise modal experimental. O experimento proposto foi utilizado para identificar as principais características de resposta do disco quando a excitação é realizada através do material de fricção. Essa condição também foi comparada com aquela em que a excitação foi aplicada diretamente no disco A métrica mais adequada para avaliação desse experimento foi identificada como o valor médio da magnitude da Função Resposta em Frequência (FRF), calculado através do estimador H3. O aparato proposto se mostrou capaz de identificar diferenças nas amostras avaliadas quanto à propensão dessas à produção de vibrações na superfície do disco. As amostras foram avaliadas no experimento proposto nas condições sem e com filme tribológico sobre a sua superfície, as quais correspondem ao estado das amostras antes e depois, respectivamente, do processo de caracterização do coeficiente de atrito destas, utilizando o tribômetro do LATRIB/UFRGS. Foi observado que as amostras com filme produziram maior vibração do que as amostras sem filme. Os resultados obtidos demonstraram uma forte correlação entre a propensão das amostras à produção de vibrações e a distribuição de asperezas da superfície das amostras. Esses resultados indicam que materiais de fricção com superfícies planas são capazes de transmitir mais vibração à superfície do disco do que aqueles com superfícies mais rugosas. / The present work describes the development and analysis of an experimental apparatus designed to evaluate the contribution of friction materials in vibrations induced on the surface of a brake disc. The proposed apparatus is equipped with a modal exciter (shaker), which was used to promote and control the excitation signal applied in the evaluated friction material. The response of this excitation in the disc surface was measured with accelerometers. The eight samples evaluated in this study was also characterized in terms of its friction coefficient and the asperity distribution of its surface. The modal characteristic of the disc was described in terms of its natural frequencies, damping and modal shapes, whose parameters were obtained by application of experimental modal analysis. The proposed apparatus was used to identify the main characteristics of the disc response when the excitation is applied throw the friction material. This case was also compared to the condition in which the disc was excited directly by the shaker. The most adequate metric to evaluate this experiment was selected as the mean value of the Frequency Response Function (FRF) spectrum, calculated by the H3 estimator The proposed apparatus showed being capable of identifying differences between the evaluated samples, regarding its propensity to produce vibrations on the disc surface. The samples were evaluated in with and without tribological film deposited on its surface. It was shown that the analyzed samples had the vibration increased with tribological film compared to the condition without the film. The obtained results demonstrated a strong correlation between the samples propensity to the production of vibration and the asperity distribution of the samples surfaces. These results indicate that friction materials with flat surfaces are capable to transmit more vibrations to the disc surface than those samples with rough asperity distribution.
24

Silicon Carbide Biocompatibility, Surface Control and Electronic Cellular Interaction for Biosensing Applications

Coletti, Camilla 09 October 2007 (has links)
Cell-semiconductor hybrid systems are a potential centerpiece in the scenery of biotechnological applications. The selection and study of promising crystalline semiconductor materials for bio-sensing applications is at the basis of the development of such hybrid systems. In this work we introduce crystalline SiC as an extremely appealing material for bio-applications. For the first time we report biocompatibility studies of different SiC polytypes whose results document the biocompatibility of this material and its capability of directly interfacing cells without the need of surface functionalization. Since the successful implementation of biosensors requires a good understanding and versatile control of the semiconductor surface properties, the chemistry, crystallography and electronic status of different SiC surfaces are extensively studied while their surface morphologies are thoroughly controlled via hydrogen etching. Also, investigations of the effect of cell surface charge on the electronic status of SiC surfaces are attempted adopting a contactless surface potential monitoring technique. The results obtained from these contactless measurements lead to the development of theoretical models well-suited for the description of cell-semiconductor hybrid systems electronic interactions.
25

On tribological design in gear tooth contacts

Bergseth, Ellen January 2012 (has links)
The correct tribological design will have a considerable effect on a gear’s service life and efficiency. The purpose of this thesis is to clarify the impact of variation in the gear tooth flank tribological system on the gear contact load capacity – to increase the understanding of how surface topography and lubricant interact. In this thesis the variation in surface topography inherent in the manufacturing method has been shown, by experimental work and computer simulations, to be an important factor for the contact condition in the early life of gears. Surface analysis revealed that the formation and composition of surface boundary layers depends strongly on the chemical composition of the lubricant, but also on pre-existing surface boundary layers. Additionally, surface boundary layers play a major role in frictional behaviour, wear and in allowing the lubricant to react properly with the surfaces. Paper A presents the current ISO 6336 calculation of surface durability. A robust design approach was used to investigate the extent to which the current standard for calculation of surface durability allows for manufacturing variations and the choice of lubricant. Paper B investigates the extent to which a logarithmical profile modification can increase gear contact pressure robustness compared to traditional lead profiles for gears. Paper C compares different gear manufacturing methods and their as-manufactured (fresh unworn) surface topographies, using measured surface topographies as input to a contact simulation program. Paper D examines surface boundary layer formation and the corresponding wear in relation to different anti-wear additives in an environmentally adapted base oil. Papers E and F make use of specimens with surface topographies imitating two gear manufacturing methods (grinding and superfinishing) to be used in a twin-disc and barrel-on-disc machine respectively. The contacts are analysed by friction measurements and simulations combined with methods for surface analysis. / <p>QC 20120925</p>
26

Solvation of nanoscale interfaces

Kapcha, Lauren Helene 23 November 2010 (has links)
A dehydrogen is an ‘under-wrapped’ hydrogen bond in a protein that is purported to be a hot spot for binding due to the favorable replacement of water with hydrocarbon upon binding of another protein. A model at the level of dielectric constants is used to test the validity of the claim that moving a hydrogen bond from high dielectric (i.e. a dehydron) to low dielectric (i.e. after binding of another protein) is actually a thermodynamically favorable process. In simulation, several proteins have been shown to undergo a dewetting transition when fixed components are separated a small distance. A new atomic-level hydrophobicity scale is combined with topographical information to characterize protein interfaces. The relationship between hydrophobicity and topography for protein surfaces known to be involved in binding is examined. This framework is then applied to identify surface characteristics likely to have an affect on the occurrence of a dewetting transition. Cadmium selenide (CdSe) nanoparticles form nanospheres or nanorods when grown in solutions of varying concentrations of the surfactants hexylphosphonic acid (HPA) and trioctylphosphine oxide (TOPO). Relative binding free energies are calculated for HPA and TOPO to the solvent-accessible faces of CdSe crystals. Binding free energies calculated with a Molecular Mechanics-Generalized Born model are used to identify a set of low free energy structures for which the solvation free energy is refined with the solution to the Poisson equation. These relative binding free energies provide information about the relative growth rates of these crystal faces in the presence of surfactants. Relative growth rates are then used to help understand why nanoparticles form certain shapes in the presence of specific surfactants. / text
27

Nanocellulose for Biomedical Applications : Modification, Characterisation and Biocompatibility Studies

Hua, Kai January 2015 (has links)
In the past decade there has been increasing interest in exploring the use of nanocellulose in medicine. However, the influence of the physicochemical properties of nanocellulose on the material´s biocompatibility has not been fully investigated.  In this thesis, thin films of nanocellulose from wood (NFC) and from Cladophora algae (CC) were modified by the addition of charged groups on their surfaces and the influence of these modifications on the material´s physicochemical properties and on cell responses in vitro was studied. The results indicate that the introduction of charged groups on the surface of NFC and CC results in films with decreased surface area, smaller average pore size and a more compact structure compared with the films of unmodified nanocelluloses. Furthermore, the fibres in the carboxyl-modified CC films were uniquely aggregated and aligned, a state which tended to become more prevalent with increased surface-group density. The biocompatibility studies showed that NFC films containing hydroxypropyltrime-thylammonium (HPTMA) groups presented a more cytocompatible surface than unmodified NFC and carboxymethylated NFC regarding human dermal fibroblasts. Carboxymethyl groups resulted in NFC films that promoted inflammation, while HPTMA groups had a passivating effect in terms of inflammatory response.  On the other hand, both modified CC films behaved as inert materials in terms of the inflammatory response of monocytes/macrophages and, under pro-inflammatory stimuli, they suppressed secretion of the pro-inflammatory cytokine TNF-α, with the effects of the carboxylated CC film more pronounced than those of the HPTMA CC material.  Carboxyl CC films showed good cytocompatibility with fibroblasts and osteoblastic cells. However, it was necessary to reach a threshold value in carboxyl-group density to obtain CC films with cytocompatibility comparable to that of commercial tissue culture material.  The studies presented here highlight the ability of the nanocellulose films to modulate cell behaviour and provide a foundation for the design of nanocellulose-based materials that trigger specific cell responses. The bioactivity of nanocellulose may be optimized by careful tuning of the surface properties. The outcomes of this thesis are foreseen to contribute to our fundamental understanding of the biointerface phenomena between cells and nanocellulose as well as to enable engineering of bioinert, bioactive, and bioadaptive materials.
28

Identification of biomarkers for capsular contracture formation and novel biomimetic breast implant surface design and development

Kyle, Daniel John Taylor January 2015 (has links)
Breast implant capsular contracture (CC) formation is a significant clinical complication post augmentation/reconstruction, which often necessitates re-operation. CC, which occurs in over half of patients post augmentation, is the formation of a fibrous internal capsule which constricts around the prosthesis leading to firmness, deformity and pain. The pathoetiology of CC is poorly understood with minimal understanding of the triggers, signalling pathways or dysregulated genes implicated in its formation. Therefore, the first aim of the present thesis was to investigate biomarkers implicated in CC formation, through whole genome microarray, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) on capsule samples ranging from normal capsules (Baker Grade 1) to severely contracted capsules (Baker Grade 4). After targeted enrichment analysis, microarray identified 6 genes which were significantly dysregulated in contracted capsules. After further genomic and proteomic validation, two potential diagnostic, prognostic or therapeutic biomarkers for CC, interleukin 8 (IL8) and tissue inhibitor of metalloproteinase 4 (TIMP 4), were identified as being significantly dysregulated in CC. However, the role of each of the multiple cell types which populate a contracted capsule has yet to be determined. Therefore, the role of capsular fibroblasts was investigated using immunocytochemistry, qRT-PCR, cytokine arrays and a fibroblast populated 3D collagen matrix. IL8 and TIMP were investigated, in addition to other pro-fibrotic and pro-inflammation related candidates, to identify the role of breast capsule fibroblasts in CC formation. Normal breast fibroblast populated collagen matrices were significantly more contracted after supplementation with contracted-capsule fibroblast conditioned media, in comparison to normal growth media. It was discovered that breast-derived fibroblasts were potentially instigating and/or perpetuating CC through the transformation of normal breast fibroblasts into contracted capsule fibroblast like cells, via a paracrine signalling mechanism. The results of this work on capsular fibroblasts, and the previous work on capsular tissue, increased our understanding of the cell types and signalling molecules which are dysregulated leading to CC formation. Therefore, a novel silicone implant surface potentially capable of averting CC formation could be fabricated. Acellular dermal matrix (ADM) has been used as an adjunct in breast implant augmentation/reconstruction resulting in reduced rates of CC formation. Therefore, the micro and nanoscale topography of ADM was reproduced in a silicone surface, through a novel fabrication technique utilising comprehensive characterisation of ADM with atomic force microscopy (AFM), maskless grayscale photolithography, modified deep reactive ion etching (DRIE) and replica moulding. The features of ADM were successfully re-created in silicone to within 5 nm (Sa) and 655 nm (Sz), at a length scale of 90x90 µm2. Biological evaluation revealed that ADM PDMS surfaces promoted cell adhesion, proliferation and survival when compared to commercially available implant surfaces while cell adhesion regulating genes were upregulated and pro-inflammatory/pro-fibrotic related genes were downregulated. A reduced inflammatory cytokine response was also observed. This study demonstrates that biomimetic prosthetic implant surfaces might significantly attenuate the acute in vitro foreign body reaction to silicone. In conclusion, the results of the present thesis have enhanced our knowledge and understanding of the pathological cellular and molecular mechanisms leading to CC, in addition to the design and development of a novel, biomimetic implant surface that is potentially capable of averting the identified pathological processes in vivo.
29

Análise microscópica e da rugosidade de superfície de fios ortodônticos estéticos, antes e após deflexão / Microscopic analysis and surface roughness of aesthetic orthodontic wires before and after deflection

Pedro, Adriana Correia 25 April 2011 (has links)
Submitted by Noeme Timbo (noeme.timbo@metodista.br) on 2017-05-24T18:20:17Z No. of bitstreams: 8 Adriana Correia pag 1 - 30.pdf: 478369 bytes, checksum: ae6323176f9acdf91b9fe5c7217f35f3 (MD5) Adriana Correia pag 31 - 41.pdf: 178789 bytes, checksum: a8a9146174ae94167e7ed531819e1d18 (MD5) Adriana Correia pag 42 - 46.pdf: 392333 bytes, checksum: ee34f08401a46c70e9776ba4e5d40486 (MD5) Adriana Correia pag 47 - 52.pdf: 464089 bytes, checksum: f520d878ebeb9d1950bacff15996338e (MD5) Adriana Correia pag 53 - 63.pdf: 199749 bytes, checksum: 16f21d73c539e390b96bfb6f4520fdd5 (MD5) Adriana Correia pag 64 - 68.pdf: 715356 bytes, checksum: 93f1263a3ff487d258795b8b44cdd3d9 (MD5) Adriana Correia pag 69 - 74.pdf: 368552 bytes, checksum: b41de0756f26e159de63ae8844efc138 (MD5) Adriana Correia pag 75 - 89.pdf: 137157 bytes, checksum: 9070f8b63968e83ef5ce6a2d5cf10e43 (MD5) / Made available in DSpace on 2017-05-24T18:20:18Z (GMT). No. of bitstreams: 8 Adriana Correia pag 1 - 30.pdf: 478369 bytes, checksum: ae6323176f9acdf91b9fe5c7217f35f3 (MD5) Adriana Correia pag 31 - 41.pdf: 178789 bytes, checksum: a8a9146174ae94167e7ed531819e1d18 (MD5) Adriana Correia pag 42 - 46.pdf: 392333 bytes, checksum: ee34f08401a46c70e9776ba4e5d40486 (MD5) Adriana Correia pag 47 - 52.pdf: 464089 bytes, checksum: f520d878ebeb9d1950bacff15996338e (MD5) Adriana Correia pag 53 - 63.pdf: 199749 bytes, checksum: 16f21d73c539e390b96bfb6f4520fdd5 (MD5) Adriana Correia pag 64 - 68.pdf: 715356 bytes, checksum: 93f1263a3ff487d258795b8b44cdd3d9 (MD5) Adriana Correia pag 69 - 74.pdf: 368552 bytes, checksum: b41de0756f26e159de63ae8844efc138 (MD5) Adriana Correia pag 75 - 89.pdf: 137157 bytes, checksum: 9070f8b63968e83ef5ce6a2d5cf10e43 (MD5) Previous issue date: 2011-04-25 / The objective of this study was to evaluate the surface topography of the aesthetic yarn before and after the deflection test. The sample consisted of 70 round 0.014h test leads, 10 of each of the evaluated brands: Orthocosmetic Elastinol (Masel), Flexy Super Elastic Esthetic (Orthometric), InVu (TP Orthodontics) and ProForm Nitanium (Ortho Organizers ). Teflon® coated NiTi wires; Optis (TP Orthodontics). Fiberglass-reinforced resin wire or FRP; Niticosmetic (Tecnident). NiTi yarn coated with epoxy resin; And Nitinol SE (3M Unitek). Superelastic NiTi wire, used for control. The surface topography of each wire was evaluated by a rugosimetre and by an optical microscope, before and after being subjected to a deflection test, on the side where the force was applied and on the opposite side. Each wire was deflected in 3.1mm, at a speed of 1mm / min, with a load cell of 5N at 36.C + 1.C. The analysis of variance at three criteria (p <0.05) showed significant difference between the strands and the Tukey test showed that the Optis (TP Orthodontics) wire presented increase in the roughness parameters Ra, Rt and Rz, after the deflection. / O objetivo deste estudo foi avaliar a topografia de superficie dos fios esteticos, antes e apos teste de deflexao. A amostra foi composta por 70 corpos de prova de fios 0,014h redondos, sendo 10 de cada uma das marcas comerciais avaliadas: Orthocosmetic Elastinol (Masel), Flexy Super Elastic Esthetic (Orthometric), InVu (TP Orthodontics) e ProForm Nitanium (Ortho Organizers) . fios de NiTi revestidos por TeflonR; Optis (TP Orthodontics) . fio de resina reforcado por fibra de vidro ou FRP; Niticosmetic (Tecnident) . fio de NiTi revestido por resina epoxidica; e Nitinol SE (3M Unitek) . fio de NiTi superelastico, usado para controle. A topografia de superficie de cada fio foi avaliada por rugosimetro e por microscopio optico, antes e apos ser submetido a ensaio de deflexao, no lado em que a forca foi aplicada e no lado oposto a este. Cada fio foi defletido em 3,1mm, a uma velocidade de 1mm/min, com celula de carga de 5N a 36.C + 1.C. A analise de variancia a tres criterios (p<0,05) mostrou diferenca significante entre os fios e o teste de Tukey mostrou que o fio Optis (TP Orthodontics) apresentou aumento nos parametros de rugosidade Ra, Rt e Rz, apos a deflexao. O fio Niticosmetic (Tecnident) apresentou aumento na rugosidade media (Ra). O fio InVu (TP Orthodontics) foi o unico que mostrou aumento na rugosidade no lado em que a forca foi aplicada. A analise visual por meio de microscopia optica revelou alteracoes na superficie em todos os fios esteticos apos o teste de deflexao, desde delaminacoes do revestimento, observadas nos fios Orthocosmetic Elastinol e InVu, riscos permanentes na superficie, como visto nos fios Flexy Super Elastic Esthetic, Niticosmetic e ProForm Nitanium, e ate mesmo fratura incompleta, no fio Optis. Concluiu-se que o fio Niticosmetic apresentou topografia de superficie similar ao fio metalico, e os demais fios esteticos apresentaram maior rugosidade e alteracoes visuais na superficie.
30

ANÁLISE MICROSCÓPICA E DA RUGOSIDADE DE SUPERFÍCIE DE FIOS ORTODÔNTICOS ESTÉTICOS, ANTES E APÓS DEFLEXÃO

Pedro, Adriana Correia 25 April 2011 (has links)
Made available in DSpace on 2016-08-03T16:31:17Z (GMT). No. of bitstreams: 1 Adriana Correia pag 1 - 30.pdf: 478369 bytes, checksum: ae6323176f9acdf91b9fe5c7217f35f3 (MD5) Previous issue date: 2011-04-25 / The aim of this study was evaluate surface topography of esthetic orthodontic wires, before and after three-point bending test. The sample consisted of 70 lenghts of wires 0,014 round section, 10 of which commercial brand assessed: Orthocosmetic Elastinol (Masel), Flexy Super Elastic Esthetic (Orthometric), InVu (TP Orthodontics) and ProForm Nitanium (Ortho Organizers) Teflon® coated NiTi wires; Optis (TP Orthodontics) a fiber-reinforced plastic orthodontic wire named FRP; Niticosmetic (Tecnident) epoxy resin-coated NiTi wire; and Nitinol SE (3M Unitek) uncoated NiTi wire, used as control group. Surface topography of each wire was measured with a contact stylus perfilometer and with optical microscope, before and after being submitted to deflection, on side force was applied and on the opposite side. Each wire was 3,1mm deflected, at a speed of 1mm/min, with a 5N load cell, at 36&#8304;C + 1&#8304;C. Three criteria variance analysis (p<0,05) showed significant difference between assessed wires and Tukey s test showed Optis wire (TP Orthodontics) had increased parameters Ra, Rt and Rz mean values, after deflection. Niticosmetic (Tecnident) wire had increased average roughness (Ra) values. InVu (TP Orthodontics) was the only wire that showed greater values of roughness, on the side force was applied. Visual analysis with optical microscopy revealed surface alterations in all esthetic wires evaluated, after three-point bending test, since coating delamination, observed in Orthocosmetic Elastinol and InVu wires, permanent risks on surface, as seen in Flexy Super Elastic Esthetic, Niticosmetic and ProForm Nitanium, and even incomplete fracture, as in Optis wire. This study concluded that Niticosmetic wire showed similar surface topography to uncoated NiTi wire, and the other esthetic wires assessed had greater roughness and visual surface alterations. / O objetivo deste estudo foi avaliar a topografia de superfície dos fios estéticos, antes e após teste de deflexão. A amostra foi composta por 70 corpos de prova de fios 0,014 redondos, sendo 10 de cada uma das marcas comerciais avaliadas: Orthocosmetic Elastinol (Masel), Flexy Super Elastic Esthetic (Orthometric), InVu (TP Orthodontics) e ProForm Nitanium (Ortho Organizers) fios de NiTi revestidos por Teflon®; Optis (TP Orthodontics) fio de resina reforçado por fibra de vidro ou FRP; Niticosmetic (Tecnident) fio de NiTi revestido por resina epoxídica; e Nitinol SE (3M Unitek) fio de NiTi superelástico, usado para controle. A topografia de superfície de cada fio foi avaliada por rugosímetro e por microscópio óptico, antes e após ser submetido a ensaio de deflexão, no lado em que a força foi aplicada e no lado oposto a este. Cada fio foi defletido em 3,1mm, a uma velocidade de 1mm/min, com célula de carga de 5N a 36&#8304;C + 1&#8304;C. A análise de variância a três critérios (p<0,05) mostrou diferença significante entre os fios e o teste de Tukey mostrou que o fio Optis (TP Orthodontics) apresentou aumento nos parâmetros de rugosidade Ra, Rt e Rz, após a deflexão. O fio Niticosmetic (Tecnident) apresentou aumento na rugosidade média (Ra). O fio InVu (TP Orthodontics) foi o único que mostrou aumento na rugosidade no lado em que a força foi aplicada. A análise visual por meio de microscopia óptica revelou alterações na superfície em todos os fios estéticos após o teste de deflexão, desde delaminações do revestimento, observadas nos fios Orthocosmetic Elastinol e InVu, riscos permanentes na superfície, como visto nos fios Flexy Super Elastic Esthetic, Niticosmetic e ProForm Nitanium, e até mesmo fratura incompleta, no fio Optis. Concluiu-se que o fio Niticosmetic apresentou topografia de superfície similar ao fio metálico, e os demais fios estéticos apresentaram maior rugosidade e alterações visuaisna superfície.

Page generated in 0.0742 seconds