• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 16
  • 13
  • 10
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 222
  • 222
  • 47
  • 28
  • 22
  • 22
  • 21
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Membrane mechanics governs cell mechanics in epithelial cell: how surface area regulation ensures tension homeostasis

Pietuch, Anna 07 December 2012 (has links)
Die Plasmamembranspannung von eukaryotischen Zellen soll maßgeblich zur Regulation von zellulären Prozessen wie der Zellmigration, Mitose, Endo- und Exozytose, Membranreparatur, Osmoregulierung und Zellspreiten beitragen, welche zu einer Veränderung der Membranfläche und ihrer Deformation führt. In dieser Arbeit wurde die epitheliale Zelllinie MDCK II (Madin-Darby Canine Kidney) benutzt, um spannungsgesteuerte Oberflächenregulierung zu untersuchen. Indentationsexperimente kombiniert mit dem Herausziehen von Membrannanoröhren wurden mit Hilfe des Rasterkraftmikroskops (Atomic Force Microskope, AFM) durchgeführt, um lokale Variationen in der Membranspannung und überschüssiger Membranfläche als Funktion von äußeren Reizen abzuschätzen. Die verwendeten externen Stimuli beinhalten eine Veränderung der Funktionalität des Actomyosin-Cortexes durch die Wirkung von Blebbistatin und Cytochalasin D, sowie die Manipulation der Zytoskelett-Membran Adhäsionspunkte durch Einzel-Mikroinjektion. Die Injektion von Neomycin verhindert die Anbindung von ERM-Proteinen an das Lipid Phosphatidylinositol-(4,5)-bisphosphat (PIP2) und bewirkt somit die Abkopplung des Zytoskeletts von der Plasmamembran. Als Gegenexperiment diente die Injektion des Lipids PIP2 selbst, welches zur Erhöhung der Anzahl der Zytoskelett-Membran Adhäsionspunkte führte. Weiterhin wurden die als Membranreservoire dienenden Mikrovilli durch den Entzug von Cholesterol entfernt. Auswirkung auf das Vorhandensein von Membranreservoiren hat ebenfalls die Veränderung des osmotischen Drucks innerhalb der Zellen. Zusätzlich wurden die elastischen Eigenschaften von apikalen Zellmembran-Fragmenten von konfluenten MDCK II Zellen untersucht, welche Aufschluss über die intrinsischen Membraneigenschaften ohne den Einfluss des Zytosols und Zytoskeletts geben konnten. Abschließend wurde die Mechanik von adhärierenden und spreitenden Zellen untersucht. Zusammenfassend kann gesagt werden, dass die Plasmamembran, bestehend aus einer Phospholipiddoppelschicht, lateral schwer ausdehnbar ist aufgrund ihrer flüssig-kristallinen Natur. Durch das Vorhandensein von dynamischen Membranreservoiren wie Mikrovilli, die schnell auf Veränderungen der Membranspannung durch Membranhomöostase reagieren, werden zellulare Prozesse wie die Zellmotilität oder die Anpassung an osmotischen Stress ermöglicht. In der vorliegenden Arbeit gelang es gleichzeitig, die Membranspannung und die Verfügbarkeit von Membranfläche von adhärenten konfluenten als auch von adhärierenden und spreiten Zellen zu messen. Die durchgeführten Experimente ergaben ein detailliertes Bild wie sich die zelluläre Oberflächenregulierung in der Membranmechanik widerspiegelt.
62

SEDIMENT CONTROL ON THE SATURATION LEVEL OF GAS HYDRATE IN NATURE ENVIRONMENTS

Lu, Hailong, Zeng, Huang, Ripmeester, John A., Kawasaki, Tatsuji, Fujii, Tetsuya, Nakamizu, Masaru 07 1900 (has links)
A series of studies have been carried out to elucidate the sediment effect on the saturation level of methane hydrate in sediments. The specimens tested covered most of the natural sediment types, with various combinations of particle size and mineral composition. The results obtained indicate that particle size and clay contents are the two key factors determining the saturation level of gas hydrate in sediments: the finer the particle size and/or the higher the clay content, the lower the hydrate saturation. The observed particle size effect and clay effect on hydrate saturation can be accredited to the specific surface area of a sediment.
63

Deposition of size-selected atomic clusters on surfaces

Carroll, Simon James January 1999 (has links)
No description available.
64

An Analysis of the Surface Area of the Western Roman Empire until CE 476

Roncone, Laura Antonia January 2012 (has links)
In 1968, Rein Taagepera created growth curves of four empires by measuring the surface area of each and plotting his data on a graph of area versus time. He used his growth curves to analyse the development of empires quantitatively, as he considered surface area to be the best measurable indicator of an empire’s strength. His growth curve of the Roman Empire, in particular, has been referenced numerous times by scholars researching the decline and fall of complex civilizations to support their individual analyses of the collapse of Rome. While this thesis surveys only the territories of the Western Roman Empire, many of the parameters used by Taagepera have been either borrowed or adapted in order to define, measure, and graph the surface area of the Western Empire as precisely as possible. This thesis also adds further precision and validity to Bryan Ward-Perkins’ theory that surface area can be used to analyse and quantify the collapse of a complex society accurately. In order to demonstrate the extent to which differing circumstances and outcomes of provincial history impacted the total surface area of the Western Roman Empire, it was essential to include not only an overview of Rome’s extensive history, but also to establish the chronology, as it related to the Roman Empire, of each individual province, territory, and client kingdom within the Western Empire. Detailed chronologies of Noricum and Britannia have been included to serve as case studies as they comprise a broad range of distinct characteristics and so represent typical western provinces. My research of the history and geography of the Roman Empire has generated a comprehensive inventory that includes all the pertinent onomastic and chronological data needed to measure the surface area of each of Rome’s western provinces and client kingdoms. When plotted on a graph of area versus time, my data not only produced an accurate representation of the actual surface area of the Western Roman Empire, but also one that facilitates temporal analyses of territorial fluctuations at any given point in the Empire’s history until the fall of the Western Empire in CE 476.
65

Developing a scenario-based coral reef ecosystem model to assist management following mass coral mortality events

Glen Holmes Unknown Date (has links)
Coral reefs are experiencing increasing levels of stress due to climate change, overfishing, coastal development and nutrient runoff from agriculture to name a few. They are however, economically vital ecosystems in terms of both their income generating capacity and as a source of food for millions of people around the world. This predicament emphasises the need for effective ecosystem management to be able to balance the benefits of coral reefs with the inherent stressors associated with people utilising their resources. It is particularly important given the potential large scale impacts associated with climate change such as mass coral bleaching events. Similarly, much of the need for direct management of coral reefs exists in developing countries where the resources, information, and technology are limited or unavailable for such a task. This places them, in particular, at the high end of management uncertainty and impact vulnerability. Accordingly, there is a pronounced need to improve this capacity to understand coral reef ecosystem function and to use this to better predict the overall systems level outcome of management options. This thesis has sought to improve our understanding of key ecological elements of coral reef ecosystems and to build on this new knowledge to produce a widely applicable ecosystem model that will allow managers to better understand and predict the outcomes of their actions. Coral reef ecosystem behaviour is far from understood in its entirety and there are many facets that require detailed further investigations to be able to more confidently predict ecosystem response to any given disturbance. To enhance the current understanding of coral reef ecosystems prior to the model development, investigations were undertaken into the dynamics of nitrogen on a coral reef following bleaching induced coral mortality. The results showed that the rates of nitrogen fixation on surfaces made available due to a coral mortality event increased dramatically in the three months following coral mortality, potentially acting as a driving force for the ecosystem to pass through a phase shift to algal dominance. Application of these nitrogen dynamics to entire coral reef ecosystems required a methodology for scaling these sub coral colony processes to entire reefs. This scaling issue is particularly pertinent given the improved understanding of the overwhelming significance of micro-scale processes to community dynamics. The surface index (SI) concept, relating the two-dimensional projected area to the three-dimensional area of corals was refined and developed for variations of gross coral morphologies. This allowed for the scaling of nitrogen flux estimates to be made over entire reef systems, enabling the incorporation of these fluxes into an ecosystem scale model. One of the key factors associated with the potential for a coral reef to recover from a mass coral mortality event is the potential for new corals to successfully recruit. The process of coral recovery could potentially be enhanced if recruitment is viable in the immediate aftermath of a mortality event. Although investigations in this area were inconclusive, extensive herbivore action on turf assemblages up to eight months old indicated that recruitment may be inhibited through the high palatability of turf assemblages in this age bracket. Integrating these processes with the many other published dynamics of coral reefs allowed for the development of the dynamic systems model. By constraining the model structure to known relationships between the modelling parameters, the model can be calibrated to replicate the dynamics of any coral reef ecosystem. This allows the model to be applied to systems where limited data and/or resources are available, making it widely implementable in developing countries such as the small island states scattered around the tropics. The model is ideally suited to the adaptive management framework whereby managers can continually assess the potential future outcomes of management interventions. In addition, due to the spatially inexplicit and generic nature of the model, it can be easily adapted and integrated into large scale regional modelling frameworks or combined with other modelling packages such as socio-economic or fisheries models to provide enhanced management packages. The culmination of the targeted research and integration of existing knowledge has allowed for the development of an ecosystem model for coral reefs that can be easily adopted by coral reef managers throughout the world. It is however, by no means a definitive coral reef ecosystem model and there are many facets that can and should continue to be refined to enhance the reliability of the model.
66

Developing a scenario-based coral reef ecosystem model to assist management following mass coral mortality events

Glen Holmes Unknown Date (has links)
Coral reefs are experiencing increasing levels of stress due to climate change, overfishing, coastal development and nutrient runoff from agriculture to name a few. They are however, economically vital ecosystems in terms of both their income generating capacity and as a source of food for millions of people around the world. This predicament emphasises the need for effective ecosystem management to be able to balance the benefits of coral reefs with the inherent stressors associated with people utilising their resources. It is particularly important given the potential large scale impacts associated with climate change such as mass coral bleaching events. Similarly, much of the need for direct management of coral reefs exists in developing countries where the resources, information, and technology are limited or unavailable for such a task. This places them, in particular, at the high end of management uncertainty and impact vulnerability. Accordingly, there is a pronounced need to improve this capacity to understand coral reef ecosystem function and to use this to better predict the overall systems level outcome of management options. This thesis has sought to improve our understanding of key ecological elements of coral reef ecosystems and to build on this new knowledge to produce a widely applicable ecosystem model that will allow managers to better understand and predict the outcomes of their actions. Coral reef ecosystem behaviour is far from understood in its entirety and there are many facets that require detailed further investigations to be able to more confidently predict ecosystem response to any given disturbance. To enhance the current understanding of coral reef ecosystems prior to the model development, investigations were undertaken into the dynamics of nitrogen on a coral reef following bleaching induced coral mortality. The results showed that the rates of nitrogen fixation on surfaces made available due to a coral mortality event increased dramatically in the three months following coral mortality, potentially acting as a driving force for the ecosystem to pass through a phase shift to algal dominance. Application of these nitrogen dynamics to entire coral reef ecosystems required a methodology for scaling these sub coral colony processes to entire reefs. This scaling issue is particularly pertinent given the improved understanding of the overwhelming significance of micro-scale processes to community dynamics. The surface index (SI) concept, relating the two-dimensional projected area to the three-dimensional area of corals was refined and developed for variations of gross coral morphologies. This allowed for the scaling of nitrogen flux estimates to be made over entire reef systems, enabling the incorporation of these fluxes into an ecosystem scale model. One of the key factors associated with the potential for a coral reef to recover from a mass coral mortality event is the potential for new corals to successfully recruit. The process of coral recovery could potentially be enhanced if recruitment is viable in the immediate aftermath of a mortality event. Although investigations in this area were inconclusive, extensive herbivore action on turf assemblages up to eight months old indicated that recruitment may be inhibited through the high palatability of turf assemblages in this age bracket. Integrating these processes with the many other published dynamics of coral reefs allowed for the development of the dynamic systems model. By constraining the model structure to known relationships between the modelling parameters, the model can be calibrated to replicate the dynamics of any coral reef ecosystem. This allows the model to be applied to systems where limited data and/or resources are available, making it widely implementable in developing countries such as the small island states scattered around the tropics. The model is ideally suited to the adaptive management framework whereby managers can continually assess the potential future outcomes of management interventions. In addition, due to the spatially inexplicit and generic nature of the model, it can be easily adapted and integrated into large scale regional modelling frameworks or combined with other modelling packages such as socio-economic or fisheries models to provide enhanced management packages. The culmination of the targeted research and integration of existing knowledge has allowed for the development of an ecosystem model for coral reefs that can be easily adopted by coral reef managers throughout the world. It is however, by no means a definitive coral reef ecosystem model and there are many facets that can and should continue to be refined to enhance the reliability of the model.
67

Developing a scenario-based coral reef ecosystem model to assist management following mass coral mortality events

Glen Holmes Unknown Date (has links)
Coral reefs are experiencing increasing levels of stress due to climate change, overfishing, coastal development and nutrient runoff from agriculture to name a few. They are however, economically vital ecosystems in terms of both their income generating capacity and as a source of food for millions of people around the world. This predicament emphasises the need for effective ecosystem management to be able to balance the benefits of coral reefs with the inherent stressors associated with people utilising their resources. It is particularly important given the potential large scale impacts associated with climate change such as mass coral bleaching events. Similarly, much of the need for direct management of coral reefs exists in developing countries where the resources, information, and technology are limited or unavailable for such a task. This places them, in particular, at the high end of management uncertainty and impact vulnerability. Accordingly, there is a pronounced need to improve this capacity to understand coral reef ecosystem function and to use this to better predict the overall systems level outcome of management options. This thesis has sought to improve our understanding of key ecological elements of coral reef ecosystems and to build on this new knowledge to produce a widely applicable ecosystem model that will allow managers to better understand and predict the outcomes of their actions. Coral reef ecosystem behaviour is far from understood in its entirety and there are many facets that require detailed further investigations to be able to more confidently predict ecosystem response to any given disturbance. To enhance the current understanding of coral reef ecosystems prior to the model development, investigations were undertaken into the dynamics of nitrogen on a coral reef following bleaching induced coral mortality. The results showed that the rates of nitrogen fixation on surfaces made available due to a coral mortality event increased dramatically in the three months following coral mortality, potentially acting as a driving force for the ecosystem to pass through a phase shift to algal dominance. Application of these nitrogen dynamics to entire coral reef ecosystems required a methodology for scaling these sub coral colony processes to entire reefs. This scaling issue is particularly pertinent given the improved understanding of the overwhelming significance of micro-scale processes to community dynamics. The surface index (SI) concept, relating the two-dimensional projected area to the three-dimensional area of corals was refined and developed for variations of gross coral morphologies. This allowed for the scaling of nitrogen flux estimates to be made over entire reef systems, enabling the incorporation of these fluxes into an ecosystem scale model. One of the key factors associated with the potential for a coral reef to recover from a mass coral mortality event is the potential for new corals to successfully recruit. The process of coral recovery could potentially be enhanced if recruitment is viable in the immediate aftermath of a mortality event. Although investigations in this area were inconclusive, extensive herbivore action on turf assemblages up to eight months old indicated that recruitment may be inhibited through the high palatability of turf assemblages in this age bracket. Integrating these processes with the many other published dynamics of coral reefs allowed for the development of the dynamic systems model. By constraining the model structure to known relationships between the modelling parameters, the model can be calibrated to replicate the dynamics of any coral reef ecosystem. This allows the model to be applied to systems where limited data and/or resources are available, making it widely implementable in developing countries such as the small island states scattered around the tropics. The model is ideally suited to the adaptive management framework whereby managers can continually assess the potential future outcomes of management interventions. In addition, due to the spatially inexplicit and generic nature of the model, it can be easily adapted and integrated into large scale regional modelling frameworks or combined with other modelling packages such as socio-economic or fisheries models to provide enhanced management packages. The culmination of the targeted research and integration of existing knowledge has allowed for the development of an ecosystem model for coral reefs that can be easily adopted by coral reef managers throughout the world. It is however, by no means a definitive coral reef ecosystem model and there are many facets that can and should continue to be refined to enhance the reliability of the model.
68

Aggregates in Concrete Mix Design

Ghasemi, Yahya January 2017 (has links)
The importance of studying the behaviour and properties of concrete can be highlighted by considering the fact that concrete is the most used man-made material in the world. The very first step in making concrete is its mix design and deciding the type and amount of constitutes used in the production of concrete which should fulfil the requirements of the final product. Mix design models are commonly used for the purpose of proportioning concrete ingredients while anticipating the properties of the final product.  The current document deals with the commonly used principals in mix design models namely particle packing theory and excess water/paste layer theories. The conducted studies includes an investigation on accuracy of particle packing models (Toufar, 4C, CPM) and also tries to address the issue with measurement of specific surface area of particles as an essential input to water/paste layer theories.  It has been observed that the particle packing models can predict the packing density with acceptable margin. However, it should be mentioned that the particle packing models by themselves are not mix design models but should be rather used as a part of a mix design. In addition, it was found that the accuracy of calculating the specific surface area of particles based on their size distribution curve can be further improved by assuming angular platonic solids as uniform shape of aggregate instead of traditional approach of assuming spheres for aggregates’ shape.
69

The application of whole oyster shells in stormwater treatment removing heavy metals

Xu, Zhiying 24 August 2018 (has links)
Oyster shells are normally applied in wastewater treatment in the form of a powder; but the possibility of whole oyster shells removing metal ions in stormwater has not been investigated. The objectives of this research are to assess the application of whole oyster shells for removing metals in low concentration solutions and to explore the influence of the following factors: surface area of shells, initial concentration and exposure time, on removal efficiency. Experimental results demonstrated very good removal efficiency by oyster shells for removing copper, followed by cadmium and zinc; but was not effective in hexavalent chromium removal. Up to 70% removal can be reached in just one hour for copper with initial concentrations of 0.2ppm with 550cm2 of surface area (SA) of shells in a beaker experiment treating two-liter solutions (with an accompanying pH increase from 5 to 6.42). A removal efficiency (RE) of 57.7% and 33.3% was found for cadmium and zinc, respectively, with one day contact using shells of 300cm2 SA treating one liter of the lowest concentration solution; while only 14.3% was achieved for chromium under the same conditions. Mid-scale experiments with continuous inflow based on the 6-hour Saanich Design Storm demonstrated an 85.5% and an 83.9% RE of cadmium and copper in one day’s worth of contact time. There was no removal but in fact an increase in chromium and zinc was found for the mid-scale experiment. There was a positive relationship between initial concentration (IC) and removal efficiency for copper and zinc, but a negative relationship for chromium, while no relationship was found for cadmium. Up to 80% of copper can be removed at IC of 2.4ppm compared to 60% with IC of 0.65ppm with same amount of shells (by surface area). RE of 70%, 75% and 83% was observed for IC of 0.3ppm, 0.58ppm and 1.07ppm for zinc, respectively, with 154 cm2 SA. When IC of chromium is reduced from 1 ppm to 0.2ppm, RE tends to drop from 60% to 26%. There was also a positive relationship between SA and RE, and ET and RE. However, after a certain exposure time, increase in RE was negligible and sometimes, desorption would occur. Additionally, when the difference in surface area is small, the influence of this factor on RE was also small. When treating certain ranges of solution concentration, the effect of surface area on RE is difficult to distinguish. Moreover, the role of HRT in stormwater systems was not clearly found. / Graduate
70

Obtenção de estruturas celulares de óxido de cério a partir de solução coloidal (gelcasting) e caracterização de sua microestrutura e atividade catalítica na combustão de metano

Senisse, Carolina Alves de Lima January 2012 (has links)
Este trabalho investigou a técnica de solução coloidal(gelcasting) em meio polimérico para a obtenção de partículas de óxido de cério, visando seu emprego como catalisadores na combustão do metano. A formulação do sistema coloidal foi baseada na hidrólise de sais, como acetilacetonato de cério e nitrato de cério em presença de aditivos tais como polivinilbutiral (PVB), polivinilpirrolidona (PVP) e polivinilacetato (PVA), nas concentrações de 5, 10 e 15%, em meio alcoólico ou aquoso. Essas soluções, contendo os íons de interesse, foram submetidas a um tratamento térmico a 650°C, por 30 minutos, com taxa de aquecimento de 2°C/min. Após o tratamento térmico, os produtos obtidos foram caracterizados quanto a sua morfologia, área superficial, cristalinidade, perda de massa e atividade catalítica. As amostras obtidas a partir de acetilacetonato de cério mostraram-se mais reativas do que as obtidas a partir de nitrato de cério na catálise da combustão do metano, pois apresentaram maiores conversões e atingiram maiores temperaturas durante o processo, o que é de extrema importância uma vez que a combustão catalítica do metano é utilizada para a geração de energia térmica. Durante o processo de combustão, utilizando-se as partículas obtidas a partir de acetilacetonato de cério, observou-se a liberação de grandes quantidades de compostos nitrogenados quando comparado aos resultados dos ensaios com as partículas obtidas com nitrato de cério. Após a combustão do metano, as amostras sofreram significativa alteração na área superficial, provavelmente devido à intensidade do calor liberado, o que deu origem a maior aglomeração dos particulados. / This study investigatedto obtainparticles ofcerium oxide, for use as catalysts for thecombustion of methaneusing the techniqueofthroughpolymericcolloidal solution (gelcasting).Obtaining thecolloidal systemisbased onhydrolysis ofsalts such asceriumacetylacetonate,cerium nitratein the presence ofadditives such aspolyvinylbutyral(PVB),polyvinylpyrrolidone (PVP) and polyvinyl acetate(PVA),at concentrations of 5, 10 and 15% inaqueousoralcoholic medium. Thesesolutions containingionsof interestwere subjected to aheat treatment at 650°C for30 minutes, with heating rate of2°C/min.After heat treatment, the fibers were characterized accordingto their morphology, surface area, crystallinity, weight loss andcatalytic activity. Samplesobtained fromceriumacetylacetonatewere morereactivethan theceriumnitrateto thecombustion of methane, as showed greaterconversions andhigher temperaturesreachedduring the process, which is of utmost importancesince thecombustioncatalyticmethaneis usedfor generatingthermal energy.Duringthe combustion processusing theobtained fromparticlesof ceriumacetylacetonate, there was the release of largequantities ofnitrogencomparedto the results ofassays withthe particles obtainedwithcerium nitrate.Afterthe reactionwith methane, the samples underwentsignificantchange insurface area, probably dueto the intensity of heat of this reaction, which helps to agglomerate the particles.

Page generated in 0.0405 seconds