• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Social sustainability of AI-related job displacement : Through the Human-Centered AI framework

Zhitniaia, Anastasiia, Heller, Lars, Mazo, Antoine January 2024 (has links)
Background: Artificial Intelligence is a novel technology that is rapidly becoming an important part of everyday life. With the increasing implementation across industries, there are fears of massive job displacements in the future. Because of this, it is crucial to examine these effects and how Artificial Intelligence can be designed to comply with social sustainability.   Purpose: explore how social sustainability can be considered to mitigate negative outcomes related to individual perceptions of AI-related job displacement.  Method: To conduct this study, we have applied the Delphi method which consists of surveys and panels done with 9 participants (5 experts and 4 students). The data collected was then analysed with the IPA method and classed into themes, and clusters of themes. This allowed us to obtain findings which formed the basis of the theoretical and practical conclusions and implications that this paper obtained.   Conclusion: The research shows the potential benefits of designing Artificial Intelligence for social sustainability by adapting the model of Human-Centred AI to the context of AI-related job displacement.
2

Energy Consumption of Browser-based Creative AI

Lund, Leonard, Blomkvist, Felix January 2022 (has links)
Creative AI in the music field has in recent years begun stepping out of the confines of academia and seen increased adoption among musicians thanks to developers launching consumer products powered by AI. These new tools are opening up new possibilities in music-making, but their increased use and development prompts inquiry regarding their sustainability. While studies have been conducted on the sustainability of training AI models, the sustainability of the usage of Creative AI remains largely unexplored. To amend this, this paper studies the energy consumption of using four music-related browser-based Creative AI tools. The four tools are Tone Transfer, Piano Scribe, MidiMe and Performance RNN, all developed by Google Magenta. The energy consumption of the tools was found by measuring the power provided to the computer. This was done by connecting a smart plug between the computer’s power cord and the wall socket. We found that Tone Transfer consumed the most energy per use with an average energy consumption of 392 J. MidiMe consumed the least energy per use with 138 J. All the tools consumed less energy per use than leaving the computer running in steady-state for 70 seconds. With this study, we have shown that the usage of music-related Creative AI tools does not represent a threat to sustainability goals. Our findings indicate that the tools studied in this paper manage to be efficient, while being both powerful and useful. This disputes the notion that there is a trade-off between performance and efficiency in the design of AI tools. We postulate that when developing tools for local use by consumers, developers are bound by limitations that force them to design efficient tools. / Kreativ AI inom musikområdet har under de senaste åren börjat ta sig ut ur den akademiska världens ramar och anammats i högre grad bland musiker. Detta tack vare att utvecklare börjat lanserat konsumentprodukter som drivs av AI. Dessa nya verktyg öppnar upp för nya möjligheter inom musikskapande, men deras ökade användning och utveckling föranleder undersökningar om deras hållbarhet. Även om studier har gjorts gällande hållbarheten av att träna AI-modeller, är hållbarheten av användningen av Kreativ AI fortfarande till stor del outforskat. För att ändra detta studerar vi i denna artikel energiförbrukningen av att använda fyra musikrelaterade webbläsarbaserade Kreativa AI-verktyg. De fyra verktygen är Tone Transfer, Piano Scribe, MidiMe och Performance RNN, alla utvecklade av Google Magenta. Verktygens energiförbrukning hittades genom att mäta effekten till datorn. Detta gjordes genom att ansluta en smart kontakt mellan datorns nätsladd och vägguttaget. Vi fann att Tone Transfer förbrukade mest energi per användning med en genomsnittlig energiförbrukning på 392 J. MidiMe förbrukade minst energi per användning med 138 J. Alla verktyg förbrukade mindre energi per användning än vad som konsumeras av att låta datorn vara igång i steady-state i 70 sekunder. Med denna studie har vi visat att användningen av musikrelaterade Kreativa AI-verktyg inte utgör ett hot mot hållbarhetsmål. Våra resultat tyder på att verktygen som studerats i denna artikel lyckas vara effektiva, samtidigt som de är både kraftfulla och användbara. Detta ifrågasätter uppfattningen om att det finns en avvägning mellan prestanda och effektivitet i utformningen av AI-verktyg. Vi anser att när utvecklare utvecklar verktyg för lokal användning av konsumenter är utvecklare bundna av begränsningar som tvingar dem att designa effektiva verktyg.
3

Utilizing energy-saving techniques to reduce energy and memory consumption when training machine learning models : Sustainable Machine Learning / Implementation av energibesparande tekniker för att minska energi- och minnesförbrukningen vid träning av modeller för maskininlärning : Hållbar maskininlärning

El Yaacoub, Khalid January 2024 (has links)
Emerging machine learning (ML) techniques are showing great potential in prediction performance. However, research and development is often conducted in an environment with extensive computational resources and blinded by prediction performance. In reality, computational resources might be contained on constrained hardware where energy and memory consumption must be restrained. Furthermore, shortages of sufficiently large datasets for ML is a frequent problem, combined with the cost of data retention. This generates a significant demand for sustainable ML. With sustainable ML, practitioners can train ML models on less data, which reduces memory and energy consumption during the training process. To explore solutions to these problems, this thesis dives into several techniques that have been introduced in the literature to achieve energy-savings when training machine learning models. These techniques include Quantization-Aware Training, Model Distillation, Quantized Distillation, Continual Learning and a deeper dive into Siamese Neural Networks (SNNs), one of the most promising techniques for sustainability. Empirical evaluations are conducted using several datasets to illustrate the potential of these techniques and their contribution to sustainable ML. The findings of this thesis show that the energy-saving techniques could be leveraged in some cases to make machine learning models more manageable and sustainable whilst not compromising significant model prediction performance. In addition, the deeper dive into SNNs shows that SNNs can outperform standard classification networks, under both the standard multi-class classification case and the Continual Learning case, whilst being trained on significantly less data. / Maskininlärning har i den senaste tidens forskning visat stor potential och hög precision inom klassificering. Forskning, som ofta bedrivs i en miljö med omfattande beräkningsresurser, kan lätt bli förblindad av precision. I verkligheten är ofta beräkningsresurser lokaliserade på hårdvara där energi- och minneskapacitet är begränsad. Ytterligare ett vanligt problem är att uppnå en tillräckligt stor datamängd för att uppnå önskvärd precision vid träning av maskininlärningsmodeller. Dessa problem skapar en betydande efterfrågan av hållbar maskininlärning. Hållbar maskininlärning har kapaciteten att träna modeller på en mindre datamängd, vilket minskar minne- och energiförbrukning under träningsprocessen. För att utforska hållbar maskininlärning analyserar denna avhandling Quantization-Aware Training, Model Distillation, Quantized Distillation, Continual Learning och en djupare evaluering av Siamesiska Neurala Nätverk (SNN), en av de mest lovande teknikerna inom hållbar maskininlärning. Empiriska utvärderingar utfördes med hjälp av flera olika datamängder för att illustrera potentialen hos dessa tekniker. Resultaten visar att energibesparingsteknikerna kan utnyttjas för att göra maskininlärningsmodeller mer hållbara utan att kompromissa för precision. Dessutom visar undersökningen av SNNs att de kan överträffa vanliga neurala nätverk, med och utan Continual Learning, även om de tränas på betydligt mindre data.

Page generated in 0.0386 seconds